- PlantTraitNet: An Uncertainty-Aware Multimodal Framework for Global-Scale Plant Trait Inference from Citizen Science Data Global plant maps of plant traits, such as leaf nitrogen or plant height, are essential for understanding ecosystem processes, including the carbon and energy cycles of the Earth system. However, existing trait maps remain limited by the high cost and sparse geographic coverage of field-based measurements. Citizen science initiatives offer a largely untapped resource to overcome these limitations, with over 50 million geotagged plant photographs worldwide capturing valuable visual information on plant morphology and physiology. In this study, we introduce PlantTraitNet, a multi-modal, multi-task uncertainty-aware deep learning framework that predictsfour key plant traits (plant height, leaf area, specific leaf area, and nitrogen content) from citizen science photos using weak supervision. By aggregating individual trait predictions across space, we generate global maps of trait distributions. We validate these maps against independent vegetation survey data (sPlotOpen) and benchmark them against leading global trait products. Our results show that PlantTraitNet consistently outperforms existing trait maps across all evaluated traits, demonstrating that citizen science imagery, when integrated with computer vision and geospatial AI, enables not only scalable but also more accurate global trait mapping. This approach offers a powerful new pathway for ecological research and Earth system modeling. 17 authors · Nov 10, 2025
- Total Nitrogen Estimation in Agricultural Soils via Aerial Multispectral Imaging and LIBS Measuring soil health indicators is an important and challenging task that affects farmers' decisions on timing, placement, and quantity of fertilizers applied in the farms. Most existing methods to measure soil health indicators (SHIs) are in-lab wet chemistry or spectroscopy-based methods, which require significant human input and effort, time-consuming, costly, and are low-throughput in nature. To address this challenge, we develop an artificial intelligence (AI)-driven near real-time unmanned aerial vehicle (UAV)-based multispectral sensing (UMS) solution to estimate total nitrogen (TN) of the soil, an important macro-nutrient or SHI that directly affects the crop health. Accurate prediction of soil TN can significantly increase crop yield through informed decision making on the timing of seed planting, and fertilizer quantity and timing. We train two machine learning models including multi-layer perceptron and support vector machine to predict the soil nitrogen using a suite of data classes including multispectral characteristics of the soil and crops in red, near-infrared, and green spectral bands, computed vegetation indices, and environmental variables including air temperature and relative humidity. To generate the ground-truth data or the training data for the machine learning models, we measure the total nitrogen of the soil samples (collected from a farm) using laser-induced breakdown spectroscopy (LIBS). 3 authors · Jul 5, 2021
- Dry ice baths as liquid nitrogen substitutes for physics demonstrations Liquid nitrogen (LN2) is a long-time favorite for physics demonstrations, with a large repertoire of crowd-pleasing experiments that are cornerstones in outreach efforts. While R1 universities usually have a ready LN2 supply for their Physics, Chemistry, and Biology departments, K-12 and two-year college teachers often have to go to specialty suppliers to obtain LN2, and also need access to expensive storage equipment. Dry ice (solid CO2) is available at many super markets, and as such its suitability as a substitute for LN2 was explored, with the results discussed below. At 77K (-196{\deg}C) LN2 is considerably colder than dry ice at 195K (-78.5{\deg}C), however some demonstrations are still viable. 2 authors · Oct 10, 2025
- NGQA: A Nutritional Graph Question Answering Benchmark for Personalized Health-aware Nutritional Reasoning Diet plays a critical role in human health, yet tailoring dietary reasoning to individual health conditions remains a major challenge. Nutrition Question Answering (QA) has emerged as a popular method for addressing this problem. However, current research faces two critical limitations. On one hand, the absence of datasets involving user-specific medical information severely limits personalization. This challenge is further compounded by the wide variability in individual health needs. On the other hand, while large language models (LLMs), a popular solution for this task, demonstrate strong reasoning abilities, they struggle with the domain-specific complexities of personalized healthy dietary reasoning, and existing benchmarks fail to capture these challenges. To address these gaps, we introduce the Nutritional Graph Question Answering (NGQA) benchmark, the first graph question answering dataset designed for personalized nutritional health reasoning. NGQA leverages data from the National Health and Nutrition Examination Survey (NHANES) and the Food and Nutrient Database for Dietary Studies (FNDDS) to evaluate whether a food is healthy for a specific user, supported by explanations of the key contributing nutrients. The benchmark incorporates three question complexity settings and evaluates reasoning across three downstream tasks. Extensive experiments with LLM backbones and baseline models demonstrate that the NGQA benchmark effectively challenges existing models. In sum, NGQA addresses a critical real-world problem while advancing GraphQA research with a novel domain-specific benchmark. 12 authors · Dec 19, 2024
1 Kitchen Food Waste Image Segmentation and Classification for Compost Nutrients Estimation The escalating global concern over extensive food wastage necessitates innovative solutions to foster a net-zero lifestyle and reduce emissions. The LILA home composter presents a convenient means of recycling kitchen scraps and daily food waste into nutrient-rich, high-quality compost. To capture the nutritional information of the produced compost, we have created and annotated a large high-resolution image dataset of kitchen food waste with segmentation masks of 19 nutrition-rich categories. Leveraging this dataset, we benchmarked four state-of-the-art semantic segmentation models on food waste segmentation, contributing to the assessment of compost quality of Nitrogen, Phosphorus, or Potassium. The experiments demonstrate promising results of using segmentation models to discern food waste produced in our daily lives. Based on the experiments, SegFormer, utilizing MIT-B5 backbone, yields the best performance with a mean Intersection over Union (mIoU) of 67.09. Class-based results are also provided to facilitate further analysis of different food waste classes. 6 authors · Jan 26, 2024
- Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop Simulations Nitrogen (N) management is critical to sustain soil fertility and crop production while minimizing the negative environmental impact, but is challenging to optimize. This paper proposes an intelligent N management system using deep reinforcement learning (RL) and crop simulations with Decision Support System for Agrotechnology Transfer (DSSAT). We first formulate the N management problem as an RL problem. We then train management policies with deep Q-network and soft actor-critic algorithms, and the Gym-DSSAT interface that allows for daily interactions between the simulated crop environment and RL agents. According to the experiments on the maize crop in both Iowa and Florida in the US, our RL-trained policies outperform previous empirical methods by achieving higher or similar yield while using less fertilizers 5 authors · Apr 21, 2022
- Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals... 12 authors · Mar 20, 2025
- Evaluating Sugarcane Yield Variability with UAV-Derived Cane Height under Different Water and Nitrogen Conditions This study investigates the relationship between sugarcane yield and cane height derived under different water and nitrogen conditions from pre-harvest Digital Surface Model (DSM) obtained via Unmanned Aerial Vehicle (UAV) flights over a sugarcane test farm. The farm was divided into 62 blocks based on three water levels (low, medium, and high) and three nitrogen levels (low, medium, and high), with repeated treatments. In pixel distribution of DSM for each block, it provided bimodal distribution representing two peaks, ground level (gaps within canopies) and top of the canopies respectively. Using bimodal distribution, mean cane height was extracted for each block by applying a trimmed mean to the pixel distribution, focusing on the top canopy points. Similarly, the extracted mean elevation of the base was derived from the bottom points, representing ground level. The Derived Cane Height Model (DCHM) was generated by taking the difference between the mean canopy height and mean base elevation for each block. Yield measurements (tons/acre) were recorded post-harvest for each block. By aggregating the data into nine treatment zones (e.g., high water-low nitrogen, low water-high nitrogen), the DCHM and median yield were calculated for each zone. The regression analysis between the DCHM and corresponding yields for the different treatment zones yielded an R 2 of 0.95. This study demonstrates the significant impact of water and nitrogen treatments on sugarcane height and yield, utilizing one-time UAV-derived DSM data. 5 authors · Oct 28, 2024
- The chemical inventory of the planet-hosting disk PDS 70 As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4''-0.5'' (sim50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time. 6 authors · Jan 20, 2021
- OBESEYE: Interpretable Diet Recommender for Obesity Management using Machine Learning and Explainable AI Obesity, the leading cause of many non-communicable diseases, occurs mainly for eating more than our body requirements and lack of proper activity. So, being healthy requires heathy diet plans, especially for patients with comorbidities. But it is difficult to figure out the exact quantity of each nutrient because nutrients requirement varies based on physical and disease conditions. In our study we proposed a novel machine learning based system to predict the amount of nutrients one individual requires for being healthy. We applied different machine learning algorithms: linear regression, support vector machine (SVM), decision tree, random forest, XGBoost, LightGBM on fluid and 3 other major micronutrients: carbohydrate, protein, fat consumption prediction. We achieved high accuracy with low root mean square error (RMSE) by using linear regression in fluid prediction, random forest in carbohydrate prediction and LightGBM in protein and fat prediction. We believe our diet recommender system, OBESEYE, is the only of its kind which recommends diet with the consideration of comorbidities and physical conditions and promote encouragement to get rid of obesity. 3 authors · Aug 5, 2023
- NutriBench: A Dataset for Evaluating Large Language Models on Nutrition Estimation from Meal Descriptions Accurate nutrition estimation helps people make informed dietary choices and is essential in the prevention of serious health complications. We present NutriBench, the first publicly available natural language meal description nutrition benchmark. NutriBench consists of 11,857 meal descriptions generated from real-world global dietary intake data. The data is human-verified and annotated with macro-nutrient labels, including carbohydrates, proteins, fats, and calories. We conduct an extensive evaluation of NutriBench on the task of carbohydrate estimation, testing twelve leading Large Language Models (LLMs), including GPT-4o, Llama3.1, Qwen2, Gemma2, and OpenBioLLM models, using standard, Chain-of-Thought and Retrieval-Augmented Generation strategies. Additionally, we present a study involving professional nutritionists, finding that LLMs can provide more accurate and faster estimates. Finally, we perform a real-world risk assessment by simulating the effect of carbohydrate predictions on the blood glucose levels of individuals with diabetes. Our work highlights the opportunities and challenges of using LLMs for nutrition estimation, demonstrating their potential to aid professionals and laypersons and improve health outcomes. Our benchmark is publicly available at: https://mehak126.github.io/nutribench.html 5 authors · Jul 4, 2024
- MV-Match: Multi-View Matching for Domain-Adaptive Identification of Plant Nutrient Deficiencies An early, non-invasive, and on-site detection of nutrient deficiencies is critical to enable timely actions to prevent major losses of crops caused by lack of nutrients. While acquiring labeled data is very expensive, collecting images from multiple views of a crop is straightforward. Despite its relevance for practical applications, unsupervised domain adaptation where multiple views are available for the labeled source domain as well as the unlabeled target domain is an unexplored research area. In this work, we thus propose an approach that leverages multiple camera views in the source and target domain for unsupervised domain adaptation. We evaluate the proposed approach on two nutrient deficiency datasets. The proposed method achieves state-of-the-art results on both datasets compared to other unsupervised domain adaptation methods. The dataset and source code are available at https://github.com/jh-yi/MV-Match. 5 authors · Sep 1, 2024