Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeVirgo: A Preliminary Exploration on Reproducing o1-like MLLM
Recently, slow-thinking reasoning systems, built upon large language models (LLMs), have garnered widespread attention by scaling the thinking time during inference. There is also growing interest in adapting this capability to multimodal large language models (MLLMs). Given that MLLMs handle more complex data semantics across different modalities, it is intuitively more challenging to implement multimodal slow-thinking systems. To address this issue, in this paper, we explore a straightforward approach by fine-tuning a capable MLLM with a small amount of textual long-form thought data, resulting in a multimodal slow-thinking system, Virgo (Visual reasoning with long thought). We find that these long-form reasoning processes, expressed in natural language, can be effectively transferred to MLLMs. Moreover, it seems that such textual reasoning data can be even more effective than visual reasoning data in eliciting the slow-thinking capacities of MLLMs. While this work is preliminary, it demonstrates that slow-thinking capacities are fundamentally associated with the language model component, which can be transferred across modalities or domains. This finding can be leveraged to guide the development of more powerful slow-thinking reasoning systems. We release our resources at https://github.com/RUCAIBox/Virgo.
Adaptive Fast-and-Slow Visual Program Reasoning for Long-Form VideoQA
Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.
PipelineRL: Faster On-policy Reinforcement Learning for Long Sequence Generation
Reinforcement Learning (RL) is increasingly utilized to enhance the reasoning capabilities of Large Language Models (LLMs). However, effectively scaling these RL methods presents significant challenges, primarily due to the difficulty in maintaining high AI accelerator utilization without generating stale, off-policy data that harms common RL algorithms. This paper introduces PipelineRL, an approach designed to achieve a superior trade-off between hardware efficiency and data on-policyness for LLM training. PipelineRL employs concurrent asynchronous data generation and model training, distinguished by the novel in-flight weight updates. This mechanism allows the LLM generation engine to receive updated model weights with minimal interruption during the generation of token sequences, thereby maximizing both the accelerator utilization and the freshness of training data. Experiments conducted on long-form reasoning tasks using 128 H100 GPUs demonstrate that PipelineRL achieves approximately sim 2x faster learning compared to conventional RL baselines while maintaining highly on-policy training data. A scalable and modular open-source implementation of PipelineRL is also released as a key contribution.
ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
Code-enabled language models can outperform reasoning models on diverse tasks
Reasoning models (RMs), language models (LMs) trained with reinforcement learning to produce long-form natural language reasoning, have been remarkably successful, but they still require large amounts of computation and data to train, and can be slow and expensive to run. In this paper, we show that standard instruct LMs can already be elicited to be strong reasoners at a level comparable to or even surpassing their corresponding RMs (e.g., DeepSeek V3 vs R1) without finetuning, across diverse domains from instruction following and creative generation to mathematical reasoning. This is achieved by CodeAdapt, our simple recipe that combines the CodeAct framework, where LMs interleave natural language reasoning with code execution in a multi-step fashion, with few-shot bootstrap in-context learning from as few as five training problems. Analyzing four matched pairs of LMs and RMs, we find that CodeAdapt enables three LMs to outperform the corresponding RMs on average over eight tasks (up to 22.9%) while being 10-81% more token efficient, and delivers superior performance on six tasks when averaged over the four models (up to 35.7%). Furthermore, the code-augmented reasoning traces display rich and varied problem-solving strategies. Our findings support that (1) CodeAdapt-style learning and reasoning may be robust and domain general and (2) code-enabled LMs are cognitively grounded and powerful systems, potentially providing a strong foundation for in-weight reinforcement learning.
Grounded Multi-Hop VideoQA in Long-Form Egocentric Videos
This paper considers the problem of Multi-Hop Video Question Answering (MH-VidQA) in long-form egocentric videos. This task not only requires to answer visual questions, but also to localize multiple relevant time intervals within the video as visual evidences. We develop an automated pipeline to create multi-hop question-answering pairs with associated temporal evidence, enabling to construct a large-scale dataset for instruction-tuning. To monitor the progress of this new task, we further curate a high-quality benchmark, MultiHop-EgoQA, with careful manual verification and refinement. Experimental results reveal that existing multi-modal systems exhibit inadequate multi-hop grounding and reasoning abilities, resulting in unsatisfactory performance. We then propose a novel architecture, termed as Grounding Scattered Evidence with Large Language Model (GeLM), that enhances multi-modal large language models (MLLMs) by incorporating a grounding module to retrieve temporal evidence from videos using flexible grounding tokens. Trained on our visual instruction data, GeLM demonstrates improved multi-hop grounding and reasoning capabilities, setting a new baseline for this challenging task. Furthermore, when trained on third-person view videos, the same architecture also achieves state-of-the-art performance on the single-hop VidQA benchmark, ActivityNet-RTL, demonstrating its effectiveness.
Nemotron-Math: Efficient Long-Context Distillation of Mathematical Reasoning from Multi-Mode Supervision
High-quality mathematical reasoning supervision requires diverse reasoning styles, long-form traces, and effective tool integration, capabilities that existing datasets provide only in limited form. Leveraging the multi-mode generation ability of gpt-oss-120b, we introduce Nemotron-Math, a large-scale mathematical reasoning dataset containing 7.5M solution traces across high, medium, and low reasoning modes, each available both with and without Python tool-integrated reasoning (TIR). The dataset integrates 85K curated AoPS problems with 262K community-sourced StackExchange-Math problems, combining structured competition tasks with diverse real-world mathematical queries. We conduct controlled evaluations to assess the dataset quality. Nemotron-Math consistently outperforms the original OpenMathReasoning on matched AoPS problems. Incorporating StackExchange-Math substantially improves robustness and generalization, especially on HLE-Math, while preserving accuracy on math competition benchmarks. To support efficient long-context training, we develop a sequential bucketed strategy that accelerates 128K context-length fine-tuning by 2--3times without significant accuracy loss. Overall, Nemotron-Math enables state-of-the-art performance, including 100\% maj@16 accuracy on AIME 2024 and 2025 with Python TIR.
Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding
Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
MR-Align: Meta-Reasoning Informed Factuality Alignment for Large Reasoning Models
Large reasoning models (LRMs) show strong capabilities in complex reasoning, yet their marginal gains on evidence-dependent factual questions are limited. We find this limitation is partially attributable to a reasoning-answer hit gap, where the model identifies the correct facts during reasoning but fails to incorporate them into the final response, thereby reducing factual fidelity. To address this issue, we propose MR-ALIGN, a Meta-Reasoning informed alignment framework that enhances factuality without relying on external verifiers. MR-ALIGN quantifies state transition probabilities along the model's thinking process and constructs a transition-aware implicit reward that reinforces beneficial reasoning patterns while suppressing defective ones at the atomic thinking segments. This re-weighting reshapes token-level signals into probability-aware segment scores, encouraging coherent reasoning trajectories that are more conducive to factual correctness. Empirical evaluations across four factual QA datasets and one long-form factuality benchmark show that MR-ALIGN consistently improves accuracy and truthfulness while reducing misleading reasoning. These results highlight that aligning the reasoning process itself, rather than merely the outputs, is pivotal for advancing factuality in LRMs.
Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems
Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.
LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks
Recent advances in Large Language Models (LLMs) have showcased impressive reasoning abilities in structured tasks like mathematics and programming, largely driven by Reinforcement Learning with Verifiable Rewards (RLVR), which uses outcome-based signals that are scalable, effective, and robust against reward hacking. However, applying similar techniques to open-ended long-form reasoning tasks remains challenging due to the absence of generic, verifiable reward signals. To address this, we propose Direct Reasoning Optimization (DRO), a reinforcement learning framework for fine-tuning LLMs on open-ended, particularly long-form, reasoning tasks, guided by a new reward signal: the Reasoning Reflection Reward (R3). At its core, R3 selectively identifies and emphasizes key tokens in the reference outcome that reflect the influence of the model's preceding chain-of-thought reasoning, thereby capturing the consistency between reasoning and reference outcome at a fine-grained level. Crucially, R3 is computed internally using the same model being optimized, enabling a fully self-contained training setup. Additionally, we introduce a dynamic data filtering strategy based on R3 for open-ended reasoning tasks, reducing cost while improving downstream performance. We evaluate DRO on two diverse datasets -- ParaRev, a long-form paragraph revision task, and FinQA, a math-oriented QA benchmark -- and show that it consistently outperforms strong baselines while remaining broadly applicable across both open-ended and structured domains.
Improving Retrieval Augmented Language Model with Self-Reasoning
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
DisasterM3: A Remote Sensing Vision-Language Dataset for Disaster Damage Assessment and Response
Large vision-language models (VLMs) have made great achievements in Earth vision. However, complex disaster scenes with diverse disaster types, geographic regions, and satellite sensors have posed new challenges for VLM applications. To fill this gap, we curate a remote sensing vision-language dataset (DisasterM3) for global-scale disaster assessment and response. DisasterM3 includes 26,988 bi-temporal satellite images and 123k instruction pairs across 5 continents, with three characteristics: 1) Multi-hazard: DisasterM3 involves 36 historical disaster events with significant impacts, which are categorized into 10 common natural and man-made disasters. 2)Multi-sensor: Extreme weather during disasters often hinders optical sensor imaging, making it necessary to combine Synthetic Aperture Radar (SAR) imagery for post-disaster scenes. 3) Multi-task: Based on real-world scenarios, DisasterM3 includes 9 disaster-related visual perception and reasoning tasks, harnessing the full potential of VLM's reasoning ability with progressing from disaster-bearing body recognition to structural damage assessment and object relational reasoning, culminating in the generation of long-form disaster reports. We extensively evaluated 14 generic and remote sensing VLMs on our benchmark, revealing that state-of-the-art models struggle with the disaster tasks, largely due to the lack of a disaster-specific corpus, cross-sensor gap, and damage object counting insensitivity. Focusing on these issues, we fine-tune four VLMs using our dataset and achieve stable improvements across all tasks, with robust cross-sensor and cross-disaster generalization capabilities.
ViDove: A Translation Agent System with Multimodal Context and Memory-Augmented Reasoning
LLM-based translation agents have achieved highly human-like translation results and are capable of handling longer and more complex contexts with greater efficiency. However, they are typically limited to text-only inputs. In this paper, we introduce ViDove, a translation agent system designed for multimodal input. Inspired by the workflow of human translators, ViDove leverages visual and contextual background information to enhance the translation process. Additionally, we integrate a multimodal memory system and long-short term memory modules enriched with domain-specific knowledge, enabling the agent to perform more accurately and adaptively in real-world scenarios. As a result, ViDove achieves significantly higher translation quality in both subtitle generation and general translation tasks, with a 28% improvement in BLEU scores and a 15% improvement in SubER compared to previous state-of-the-art baselines. Moreover, we introduce DoveBench, a new benchmark for long-form automatic video subtitling and translation, featuring 17 hours of high-quality, human-annotated data. Our code is available here: https://github.com/pigeonai-org/ViDove
Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models
Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.
Advancing Large Language Model Attribution through Self-Improving
Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model's attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.
An Empirical Study of Retrieval Augmented Generation with Chain-of-Thought
Since the launch of ChatGPT at the end of 2022, generative dialogue models represented by ChatGPT have quickly become essential tools in daily life. As user expectations increase, enhancing the capability of generative dialogue models to solve complex problems has become a focal point of current research. This paper delves into the effectiveness of the RAFT (Retrieval Augmented Fine-Tuning) method in improving the performance of Generative dialogue models. RAFT combines chain-of-thought with model supervised fine-tuning (SFT) and retrieval augmented generation (RAG), which significantly enhanced the model's information extraction and logical reasoning abilities. We evaluated the RAFT method across multiple datasets and analysed its performance in various reasoning tasks, including long-form QA and short-form QA tasks, tasks in both Chinese and English, and supportive and comparison reasoning tasks. Notably, it addresses the gaps in previous research regarding long-form QA tasks and Chinese datasets. Moreover, we also evaluate the benefit of the chain-of-thought (CoT) in the RAFT method. This work offers valuable insights for studies focused on enhancing the performance of generative dialogue models.
Unlocking Recursive Thinking of LLMs: Alignment via Refinement
The OpenAI o1-series models have demonstrated that leveraging long-form Chain of Thought (CoT) can substantially enhance performance. However, the recursive thinking capabilities of Large Language Models (LLMs) remain limited, particularly in the absence of expert-curated data for distillation. In this paper, we propose AvR: Alignment via Refinement, a novel method aimed at unlocking the potential of LLMs for recursive reasoning through long-form CoT. AvR introduces a refinement process that integrates criticism and improvement actions, guided by differentiable learning techniques to optimize refinement-aware rewards. As a result, the synthesized multi-round data can be organized as a long refinement thought, further enabling test-time scaling. Experimental results show that AvR significantly outperforms conventional preference optimization methods. Notably, with only 3k synthetic samples, our method boosts the performance of the LLaMA-3-8B-Instruct model by over 20\% in win rate on AlpacaEval 2.0. Our code is available at Github (https://github.com/Banner-Z/AvR.git).
Learning to Reason for Long-Form Story Generation
Generating high-quality stories spanning thousands of tokens requires competency across a variety of skills, from tracking plot and character arcs to keeping a consistent and engaging style. Due to the difficulty of sourcing labeled datasets and precise quality measurements, most work using large language models (LLMs) for long-form story generation uses combinations of hand-designed prompting techniques to elicit author-like behavior. This is a manual process that is highly dependent on the specific story-generation task. Motivated by the recent success of applying RL with Verifiable Rewards to domains like math and coding, we propose a general story-generation task (Next-Chapter Prediction) and a reward formulation (Verified Rewards via Completion Likelihood Improvement) that allows us to use an unlabeled book dataset as a learning signal for reasoning. We learn to reason over a story's condensed information and generate a detailed plan for the next chapter. Our reasoning is evaluated via the chapters it helps a story-generator create, and compared against non-trained and supervised finetuning (SFT) baselines. Pairwise human judgments reveal the chapters our learned reasoning produces are preferred across almost all metrics, and the effect is more pronounced in Scifi and Fantasy genres.
Complex QA and language models hybrid architectures, Survey
This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.
