- Exploring and Adapting Chinese GPT to Pinyin Input Method While GPT has become the de-facto method for text generation tasks, its application to pinyin input method remains unexplored. In this work, we make the first exploration to leverage Chinese GPT for pinyin input method. We find that a frozen GPT achieves state-of-the-art performance on perfect pinyin. However, the performance drops dramatically when the input includes abbreviated pinyin. A reason is that an abbreviated pinyin can be mapped to many perfect pinyin, which links to even larger number of Chinese characters. We mitigate this issue with two strategies, including enriching the context with pinyin and optimizing the training process to help distinguish homophones. To further facilitate the evaluation of pinyin input method, we create a dataset consisting of 270K instances from 15 domains. Results show that our approach improves performance on abbreviated pinyin across all domains. Model analysis demonstrates that both strategies contribute to the performance boost. 8 authors · Mar 1, 2022
9 SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs In this work, we introduce Semantic Pyramid AutoEncoder (SPAE) for enabling frozen LLMs to perform both understanding and generation tasks involving non-linguistic modalities such as images or videos. SPAE converts between raw pixels and interpretable lexical tokens (or words) extracted from the LLM's vocabulary. The resulting tokens capture both the semantic meaning and the fine-grained details needed for visual reconstruction, effectively translating the visual content into a language comprehensible to the LLM, and empowering it to perform a wide array of multimodal tasks. Our approach is validated through in-context learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image understanding and generation tasks. Our method marks the first successful attempt to enable a frozen LLM to generate image content while surpassing state-of-the-art performance in image understanding tasks, under the same setting, by over 25%. 13 authors · Jun 30, 2023 4
1 Clinical Prompt Learning with Frozen Language Models Prompt learning is a new paradigm in the Natural Language Processing (NLP) field which has shown impressive performance on a number of natural language tasks with common benchmarking text datasets in full, few-shot, and zero-shot train-evaluation setups. Recently, it has even been observed that large but frozen pre-trained language models (PLMs) with prompt learning outperform smaller but fine-tuned models. However, as with many recent NLP trends, the performance of even the largest PLMs such as GPT-3 do not perform well on specialized domains (e.g. medical text), and the common practice to achieve State of the Art (SoTA) results still consists of pre-training and fine-tuning the PLMs on downstream tasks. The reliance on fine-tuning large PLMs is problematic in clinical settings where data is often held in non-GPU environments, and more resource efficient methods of training specialized domain models is crucial. We investigated the viability of prompt learning on clinically meaningful decision tasks and directly compared with more traditional fine-tuning methods. Results are partially in line with the prompt learning literature, with prompt learning able to match or improve on traditional fine-tuning with substantially fewer trainable parameters and requiring less training data. We argue that prompt learning therefore provides lower computational resource costs applicable to clinical settings, that can serve as an alternative to fine-tuning ever increasing in size PLMs. Complementary code to reproduce experiments presented in this work can be found at: https://github.com/NtaylorOX/Public_Clinical_Prompt. 5 authors · May 11, 2022
- Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM Rapidly developing large language models (LLMs) have brought tremendous intelligent applications. Especially, the GPT-4o's excellent duplex speech interaction ability has brought impressive experience to users. Researchers have recently proposed several multi-modal LLMs in this direction that can achieve user-agent speech-to-speech conversations. This paper proposes a novel speech-text multimodal LLM architecture called Freeze-Omni. Our main contribution is that the speech input and output modalities can be easily connected to a textual LLM while keeping the LLM's parameters frozen throughout the training process. We design a three-stage training strategy for modeling both the speech input and output, enabling Freeze-Omni to obtain speech-to-speech conversation ability using text-speech paired data (such as ASR and TTS data) and only 60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively ensure that the intelligence of the Freeze-Omni in the speech modality is at the same level compared with that in the text modality of its backbone LLM, while achieving low latency end-to-end spoken response. In addition, we also designed a method to achieve duplex dialogue ability through multi-task training, giving Freeze-Omni a more natural style of dialogue ability between users and agents. In summary, Freeze-Omni holds great potential to conduct speech-to-speech dialogue based on a multimodal LLM under the condition of a frozen LLM, avoiding the catastrophic forgetting problem caused by limited data and training resources. 8 authors · Nov 1, 2024
1 Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos. 6 authors · Jul 5, 2023
- User-Aware Prefix-Tuning is a Good Learner for Personalized Image Captioning Image captioning bridges the gap between vision and language by automatically generating natural language descriptions for images. Traditional image captioning methods often overlook the preferences and characteristics of users. Personalized image captioning solves this problem by incorporating user prior knowledge into the model, such as writing styles and preferred vocabularies. Most existing methods emphasize the user context fusion process by memory networks or transformers. However, these methods ignore the distinct domains of each dataset. Therefore, they need to update the entire caption model parameters when meeting new samples, which is time-consuming and calculation-intensive. To address this challenge, we propose a novel personalized image captioning framework that leverages user context to consider personality factors. Additionally, our framework utilizes the prefix-tuning paradigm to extract knowledge from a frozen large language model, reducing the gap between different language domains. Specifically, we employ CLIP to extract the visual features of an image and align the semantic space using a query-guided mapping network. By incorporating the transformer layer, we merge the visual features with the user's contextual prior knowledge to generate informative prefixes. Moreover, we employ GPT-2 as the frozen large language model. With a small number of parameters to be trained, our model performs efficiently and effectively. Our model outperforms existing baseline models on Instagram and YFCC100M datasets across five evaluation metrics, demonstrating its superiority, including twofold improvements in metrics such as BLEU-4 and CIDEr. 5 authors · Dec 7, 2023
5 LLM Modules: Knowledge Transfer from a Large to a Small Model using Enhanced Cross-Attention In this work, we propose an architecture of LLM Modules that enables the transfer of knowledge from a large pre-trained model to a smaller model using an Enhanced Cross-Attention mechanism. In the proposed scheme, the Qwen2-1.5B model is frozen and its representations are passed through specially designed attention layers to the GPT-Neo-125M model, which is trained on limited computational resources. Experimental results on the Bespoke-Stratos-17k dataset demonstrate that after 15 epochs of training, the combined model generates responses comparable in quality to those obtained by distillation. We discuss the advantages of the modular approach, provide examples of input queries and comparative analysis, and outline prospects for further extension of the method. 1 authors · Feb 12, 2025 2
4 Thinking While Listening: Simple Test Time Scaling For Audio Classification We propose a framework that enables neural models to "think while listening" to everyday sounds, thereby enhancing audio classification performance. Motivated by recent advances in the reasoning capabilities of large language models, we address two central questions: (i) how can thinking be incorporated into existing audio classification pipelines to enable reasoning in the category space and improve performance, and (ii) can a new architecture be designed from the ground up to support both thinking and test-time scaling? We demonstrate that in both settings, our models exhibit improved classification accuracy. Leveraging test-time scaling, we observe consistent gains as the number of sampled traces increases. Furthermore, we evaluate two open-source reasoning models, GPT-OSS-20B and Qwen3-14B, showing that while such models are capable of zero-shot reasoning, a lightweight approach--retraining only the embedding matrix of a frozen, smaller model like GPT-2--can surpass the performance of billion-parameter text-based reasoning models. 2 authors · Sep 23, 2025 2
- AI-SearchPlanner: Modular Agentic Search via Pareto-Optimal Multi-Objective Reinforcement Learning Recent studies have explored integrating Large Language Models (LLMs) with search engines to leverage both the LLMs' internal pre-trained knowledge and external information. Specially, reinforcement learning (RL) has emerged as a promising paradigm for enhancing LLM reasoning through multi-turn interactions with search engines. However, existing RL-based search agents rely on a single LLM to handle both search planning and question-answering (QA) tasks in an end-to-end manner, which limits their ability to optimize both capabilities simultaneously. In practice, sophisticated AI search systems often employ a large, frozen LLM (e.g., GPT-4, DeepSeek-R1) to ensure high-quality QA. Thus, a more effective and efficient approach is to utilize a small, trainable LLM dedicated to search planning. In this paper, we propose AI-SearchPlanner, a novel reinforcement learning framework designed to enhance the performance of frozen QA models by focusing on search planning. Specifically, our approach introduces three key innovations: 1) Decoupling the Architecture of the Search Planner and Generator, 2) Dual-Reward Alignment for Search Planning, and 3) Pareto Optimization of Planning Utility and Cost, to achieve the objectives. Extensive experiments on real-world datasets demonstrate that AI SearchPlanner outperforms existing RL-based search agents in both effectiveness and efficiency, while exhibiting strong generalization capabilities across diverse frozen QA models and data domains. 3 authors · Aug 27, 2025
- UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on a diverse set of tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps. 10 authors · Mar 15, 2023
1 FuseGPT: Learnable Layers Fusion of Generative Pre-trained Transformers Generative Pre-trained Transformers (GPTs) have demonstrated remarkable performance across diverse domains through the extensive scaling of model parameters. Recent works observe the redundancy across the transformer blocks and develop compression methods by structured pruning of the unimportant blocks. However, such straightforward elimination will always provide irreversible performance degradation. In this paper, we propose FuseGPT, a novel methodology to recycle the pruned transformer blocks to further recover the model performance. Firstly we introduce a new importance detection metric, Macro Influence (MI), to detect the long-term influence of each transformer block by calculating their loss of information after removal. Then we propose group-level layers fusion, which adopts the parameters in layers of the unimportant blocks and injects them into the corresponding layers inside the neighboring blocks. The fusion is not one-off but through iterative parameter updates by lightweight group-level fine-tuning. Specifically, these injected parameters are frozen but weighted with learnable rank decomposition matrices to reduce the overhead during fine-tuning. Our approach not only works well on large language models but also on large multimodal models. The experiments have shown that, by using modest amounts of data, FuseGPT can outperform previous works in both perplexity and zero-shot task performance. 6 authors · Nov 21, 2024
4 SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches. The code is available at: https://github.com/IST-DASLab/sparsegpt. 2 authors · Jan 2, 2023