- First Light and Reionization Epoch Simulations (FLARES) -- XVIII: the ionising emissivities and hydrogen recombination line properties of early AGN One of the most remarkable results from the James Webb Space Telescope has been the discovery of a large population of compact sources exhibiting strong broad Halpha emission, typically interpreted to be low-luminosity broad-line (Type 1) active galactic nuclei (BLAGN). An important question is whether these observations are in tension with galaxy formation models, and if so how? While comparisons have been made using physical properties (i.e.~black hole mass and accretion rate) inferred from observations, these require the use of SED modelling assumptions, or locally inferred scaling relations, which may be unjustified, at least in the distant high-redshift Universe. In this work we take an alternative approach and forward model predictions from the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations to predict the observable properties of BLAGN. We achieve this by first coupling \flares\ with the \qsosed\ model to predict the ionising photon luminosities of high-redshift (z>5) AGN. To model the observed broad Halpha emission we then assume a constant conversion factor and covering fraction, and the fraction of AGN that have observable broad-lines. With a reasonable choice of these parameters, \flares\ is able to reproduce observational constraints on the Halpha luminosity function and equivalent width distribution at z=5. 13 authors · May 8
- First Light And Reionisation Epoch Simulations (FLARES) XI: [OIII] emitting galaxies at $5<z<10$ JWST has now made it possible to probe the rest-frame optical line emission of high-redshift galaxies extending to z~9, and potentially beyond. To aid in the interpretation of these emerging constraints, in this work we explore predictions for [OIII] emission in high-redshift galaxies using the First Light and Reionisation Epoch Simulations (FLARES). We produce predictions for the [OIII] luminosity function, its correlation with the UV luminosity, and the distribution of equivalent widths (EWs). We also explore how the [OIII] EW correlates with physical properties including specific star formation rate, metallicity, and dust attenuation. Our predictions are largely consistent with recent observational constraints on the luminosity function, average equivalent widths, and line ratios. However, they fail to reproduce the observed tail of high-EW sources and the number density of extreme line emitters. Possibilities to explain these discrepancies include an additional source of ionising photons and/or greater stochasticity in star formation in the model or photometric scatter and/or bias in the observations. With JWST now rapidly building larger samples and a wider range of emission lines the answer to this remaining discrepancy should be available imminently. 13 authors · Jan 30, 2023
- Classifier-Free Guidance is a Predictor-Corrector We investigate the theoretical foundations of classifier-free guidance (CFG). CFG is the dominant method of conditional sampling for text-to-image diffusion models, yet unlike other aspects of diffusion, it remains on shaky theoretical footing. In this paper, we disprove common misconceptions, by showing that CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al., 2021), and neither sampler with CFG generates the gamma-powered distribution p(x|c)^gamma p(x)^{1-gamma}. Then, we clarify the behavior of CFG by showing that it is a kind of predictor-corrector method (Song et al., 2020) that alternates between denoising and sharpening, which we call predictor-corrector guidance (PCG). We prove that in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for the conditional distribution together with a Langevin dynamics corrector for a gamma-powered distribution (with a carefully chosen gamma). Our work thus provides a lens to theoretically understand CFG by embedding it in a broader design space of principled sampling methods. 2 authors · Aug 16, 2024
- Beyond IID weights: sparse and low-rank deep Neural Networks are also Gaussian Processes The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that allows a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews et al. (2018) to a larger class of initial weight distributions (which we call PSEUDO-IID), including the established cases of IID and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with PSEUDO-IID distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training. Moreover, they enable the posterior distribution of Bayesian Neural Networks to be tractable across these various initialization schemes. 3 authors · Oct 25, 2023
- OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. https://github.com/BrotherHappy/OSTQuant{https://github.com/BrotherHappy/OSTQuant}. 9 authors · Jan 23
- Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering Recent empirical studies have demonstrated that diffusion models can effectively learn the image distribution and generate new samples. Remarkably, these models can achieve this even with a small number of training samples despite a large image dimension, circumventing the curse of dimensionality. In this work, we provide theoretical insights into this phenomenon by leveraging key empirical observations: (i) the low intrinsic dimensionality of image data, (ii) a union of manifold structure of image data, and (iii) the low-rank property of the denoising autoencoder in trained diffusion models. These observations motivate us to assume the underlying data distribution of image data as a mixture of low-rank Gaussians and to parameterize the denoising autoencoder as a low-rank model according to the score function of the assumed distribution. With these setups, we rigorously show that optimizing the training loss of diffusion models is equivalent to solving the canonical subspace clustering problem over the training samples. Based on this equivalence, we further show that the minimal number of samples required to learn the underlying distribution scales linearly with the intrinsic dimensions under the above data and model assumptions. This insight sheds light on why diffusion models can break the curse of dimensionality and exhibit the phase transition in learning distributions. Moreover, we empirically establish a correspondence between the subspaces and the semantic representations of image data, facilitating image editing. We validate these results with corroborated experimental results on both simulated distributions and image datasets. 6 authors · Sep 4, 2024
- Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup Mixup is a highly successful technique to improve generalization of neural networks by augmenting the training data with combinations of random pairs. Selective mixup is a family of methods that apply mixup to specific pairs, e.g. only combining examples across classes or domains. These methods have claimed remarkable improvements on benchmarks with distribution shifts, but their mechanisms and limitations remain poorly understood. We examine an overlooked aspect of selective mixup that explains its success in a completely new light. We find that the non-random selection of pairs affects the training distribution and improve generalization by means completely unrelated to the mixing. For example in binary classification, mixup across classes implicitly resamples the data for a uniform class distribution - a classical solution to label shift. We show empirically that this implicit resampling explains much of the improvements in prior work. Theoretically, these results rely on a regression toward the mean, an accidental property that we identify in several datasets. We have found a new equivalence between two successful methods: selective mixup and resampling. We identify limits of the former, confirm the effectiveness of the latter, and find better combinations of their respective benefits. 3 authors · May 26, 2023