new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

A multi-view contrastive learning framework for spatial embeddings in risk modelling

Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.

  • 3 authors
·
Nov 22

GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding

Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 58.6% on ScreenSpot-Pro and 62.2% on OSWorld-G. Project page: https://github.com/sjz5202/GUI-AIMA

QuantEase: Optimization-based Quantization for Language Models

With the rising popularity of Large Language Models (LLMs), there has been an increasing interest in compression techniques that enable their efficient deployment. This study focuses on the Post-Training Quantization (PTQ) of LLMs. Drawing from recent advances, our work introduces QuantEase, a layer-wise quantization framework where individual layers undergo separate quantization. The problem is framed as a discrete-structured non-convex optimization, prompting the development of algorithms rooted in Coordinate Descent (CD) techniques. These CD-based methods provide high-quality solutions to the complex non-convex layer-wise quantization problems. Notably, our CD-based approach features straightforward updates, relying solely on matrix and vector operations, circumventing the need for matrix inversion or decomposition. We also explore an outlier-aware variant of our approach, allowing for retaining significant weights (outliers) with complete precision. Our proposal attains state-of-the-art performance in terms of perplexity and zero-shot accuracy in empirical evaluations across various LLMs and datasets, with relative improvements up to 15% over methods such as GPTQ. Leveraging careful linear algebra optimizations, QuantEase can quantize models like Falcon-180B on a single NVIDIA A100 GPU in sim3 hours. Particularly noteworthy is our outlier-aware algorithm's capability to achieve near or sub-3-bit quantization of LLMs with an acceptable drop in accuracy, obviating the need for non-uniform quantization or grouping techniques, improving upon methods such as SpQR by up to two times in terms of perplexity.

  • 7 authors
·
Sep 4, 2023

CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution

Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to super sample medical volumes at arbitrary scales via a single model. However, existing MIASSR methods face two major limitations: (i) reliance on high-resolution (HR) volumes and (ii) limited generalization ability, which restricts their application in various scenarios. To overcome these limitations, we propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that can yield medical images at arbitrary scales and viewpoints in a continuous domain. Unlike existing MIASSR methods that fit the mapping between low-resolution (LR) and HR volumes, CuNeRF focuses on building a coordinate-intensity continuous representation from LR volumes without the need for HR references. This is achieved by the proposed differentiable modules: including cube-based sampling, isotropic volume rendering, and cube-based hierarchical rendering. Through extensive experiments on magnetic resource imaging (MRI) and computed tomography (CT) modalities, we demonstrate that CuNeRF outperforms state-of-the-art MIASSR methods. CuNeRF yields better visual verisimilitude and reduces aliasing artifacts at various upsampling factors. Moreover, our CuNeRF does not need any LR-HR training pairs, which is more flexible and easier to be used than others. Our code will be publicly available soon.

  • 4 authors
·
Mar 28, 2023

CreativeSynth: Creative Blending and Synthesis of Visual Arts based on Multimodal Diffusion

Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images. However, adapting these models for artistic image editing presents two significant challenges. Firstly, users struggle to craft textual prompts that meticulously detail visual elements of the input image. Secondly, prevalent models, when effecting modifications in specific zones, frequently disrupt the overall artistic style, complicating the attainment of cohesive and aesthetically unified artworks. To surmount these obstacles, we build the innovative unified framework CreativeSynth, which is based on a diffusion model with the ability to coordinate multimodal inputs and multitask in the field of artistic image generation. By integrating multimodal features with customized attention mechanisms, CreativeSynth facilitates the importation of real-world semantic content into the domain of art through inversion and real-time style transfer. This allows for the precise manipulation of image style and content while maintaining the integrity of the original model parameters. Rigorous qualitative and quantitative evaluations underscore that CreativeSynth excels in enhancing artistic images' fidelity and preserves their innate aesthetic essence. By bridging the gap between generative models and artistic finesse, CreativeSynth becomes a custom digital palette.

  • 8 authors
·
Jan 25, 2024 1

CrowdMoGen: Zero-Shot Text-Driven Collective Motion Generation

Crowd Motion Generation is essential in entertainment industries such as animation and games as well as in strategic fields like urban simulation and planning. This new task requires an intricate integration of control and generation to realistically synthesize crowd dynamics under specific spatial and semantic constraints, whose challenges are yet to be fully explored. On the one hand, existing human motion generation models typically focus on individual behaviors, neglecting the complexities of collective behaviors. On the other hand, recent methods for multi-person motion generation depend heavily on pre-defined scenarios and are limited to a fixed, small number of inter-person interactions, thus hampering their practicality. To overcome these challenges, we introduce CrowdMoGen, a zero-shot text-driven framework that harnesses the power of Large Language Model (LLM) to incorporate the collective intelligence into the motion generation framework as guidance, thereby enabling generalizable planning and generation of crowd motions without paired training data. Our framework consists of two key components: 1) Crowd Scene Planner that learns to coordinate motions and dynamics according to specific scene contexts or introduced perturbations, and 2) Collective Motion Generator that efficiently synthesizes the required collective motions based on the holistic plans. Extensive quantitative and qualitative experiments have validated the effectiveness of our framework, which not only fills a critical gap by providing scalable and generalizable solutions for Crowd Motion Generation task but also achieves high levels of realism and flexibility.

  • 5 authors
·
Jul 8, 2024 1

LPA3D: 3D Room-Level Scene Generation from In-the-Wild Images

Generating realistic, room-level indoor scenes with semantically plausible and detailed appearances from in-the-wild images is crucial for various applications in VR, AR, and robotics. The success of NeRF-based generative methods indicates a promising direction to address this challenge. However, unlike their success at the object level, existing scene-level generative methods require additional information, such as multiple views, depth images, or semantic guidance, rather than relying solely on RGB images. This is because NeRF-based methods necessitate prior knowledge of camera poses, which is challenging to approximate for indoor scenes due to the complexity of defining alignment and the difficulty of globally estimating poses from a single image, given the unseen parts behind the camera. To address this challenge, we redefine global poses within the framework of Local-Pose-Alignment (LPA) -- an anchor-based multi-local-coordinate system that uses a selected number of anchors as the roots of these coordinates. Building on this foundation, we introduce LPA-GAN, a novel NeRF-based generative approach that incorporates specific modifications to estimate the priors of camera poses under LPA. It also co-optimizes the pose predictor and scene generation processes. Our ablation study and comparisons with straightforward extensions of NeRF-based object generative methods demonstrate the effectiveness of our approach. Furthermore, visual comparisons with other techniques reveal that our method achieves superior view-to-view consistency and semantic normality.

  • 5 authors
·
Apr 3

DvD: Unleashing a Generative Paradigm for Document Dewarping via Coordinates-based Diffusion Model

Document dewarping aims to rectify deformations in photographic document images, thus improving text readability, which has attracted much attention and made great progress, but it is still challenging to preserve document structures. Given recent advances in diffusion models, it is natural for us to consider their potential applicability to document dewarping. However, it is far from straightforward to adopt diffusion models in document dewarping due to their unfaithful control on highly complex document images (e.g., 2000times3000 resolution). In this paper, we propose DvD, the first generative model to tackle document Dewarping via a Diffusion framework. To be specific, DvD introduces a coordinate-level denoising instead of typical pixel-level denoising, generating a mapping for deformation rectification. In addition, we further propose a time-variant condition refinement mechanism to enhance the preservation of document structures. In experiments, we find that current document dewarping benchmarks can not evaluate dewarping models comprehensively. To this end, we present AnyPhotoDoc6300, a rigorously designed large-scale document dewarping benchmark comprising 6,300 real image pairs across three distinct domains, enabling fine-grained evaluation of dewarping models. Comprehensive experiments demonstrate that our proposed DvD can achieve state-of-the-art performance with acceptable computational efficiency on multiple metrics across various benchmarks, including DocUNet, DIR300, and AnyPhotoDoc6300. The new benchmark and code will be publicly available at https://github.com/hanquansanren/DvD.

  • 7 authors
·
May 28

MPDrive: Improving Spatial Understanding with Marker-Based Prompt Learning for Autonomous Driving

Autonomous driving visual question answering (AD-VQA) aims to answer questions related to perception, prediction, and planning based on given driving scene images, heavily relying on the model's spatial understanding capabilities. Prior works typically express spatial information through textual representations of coordinates, resulting in semantic gaps between visual coordinate representations and textual descriptions. This oversight hinders the accurate transmission of spatial information and increases the expressive burden. To address this, we propose a novel Marker-based Prompt learning framework (MPDrive), which represents spatial coordinates by concise visual markers, ensuring linguistic expressive consistency and enhancing the accuracy of both visual perception and spatial expression in AD-VQA. Specifically, we create marker images by employing a detection expert to overlay object regions with numerical labels, converting complex textual coordinate generation into straightforward text-based visual marker predictions. Moreover, we fuse original and marker images as scene-level features and integrate them with detection priors to derive instance-level features. By combining these features, we construct dual-granularity visual prompts that stimulate the LLM's spatial perception capabilities. Extensive experiments on the DriveLM and CODA-LM datasets show that MPDrive achieves state-of-the-art performance, particularly in cases requiring sophisticated spatial understanding.

  • 7 authors
·
Mar 31

Federated PCA on Grassmann Manifold for Anomaly Detection in IoT Networks

In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.

  • 5 authors
·
Dec 22, 2022

KARMA: A Multilevel Decomposition Hybrid Mamba Framework for Multivariate Long-Term Time Series Forecasting

Multivariate long-term and efficient time series forecasting is a key requirement for a variety of practical applications, and there are complex interleaving time dynamics in time series data that require decomposition modeling. Traditional time series decomposition methods are single and rely on fixed rules, which are insufficient for mining the potential information of the series and adapting to the dynamic characteristics of complex series. On the other hand, the Transformer-based models for time series forecasting struggle to effectively model long sequences and intricate dynamic relationships due to their high computational complexity. To overcome these limitations, we introduce KARMA, with an Adaptive Time Channel Decomposition module (ATCD) to dynamically extract trend and seasonal components. It further integrates a Hybrid Frequency-Time Decomposition module (HFTD) to further decompose Series into frequency-domain and time-domain. These components are coupled with multi-scale Mamba-based KarmaBlock to efficiently process global and local information in a coordinated manner. Experiments on eight real-world datasets from diverse domains well demonstrated that KARMA significantly outperforms mainstream baseline methods in both predictive accuracy and computational efficiency. Code and full results are available at this repository: https://github.com/yedadasd/KARMA

  • 7 authors
·
Jun 10

High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning

State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.

  • 6 authors
·
Jul 8 1

MIRIX: Multi-Agent Memory System for LLM-Based Agents

Although memory capabilities of AI agents are gaining increasing attention, existing solutions remain fundamentally limited. Most rely on flat, narrowly scoped memory components, constraining their ability to personalize, abstract, and reliably recall user-specific information over time. To this end, we introduce MIRIX, a modular, multi-agent memory system that redefines the future of AI memory by solving the field's most critical challenge: enabling language models to truly remember. Unlike prior approaches, MIRIX transcends text to embrace rich visual and multimodal experiences, making memory genuinely useful in real-world scenarios. MIRIX consists of six distinct, carefully structured memory types: Core, Episodic, Semantic, Procedural, Resource Memory, and Knowledge Vault, coupled with a multi-agent framework that dynamically controls and coordinates updates and retrieval. This design enables agents to persist, reason over, and accurately retrieve diverse, long-term user data at scale. We validate MIRIX in two demanding settings. First, on ScreenshotVQA, a challenging multimodal benchmark comprising nearly 20,000 high-resolution computer screenshots per sequence, requiring deep contextual understanding and where no existing memory systems can be applied, MIRIX achieves 35% higher accuracy than the RAG baseline while reducing storage requirements by 99.9%. Second, on LOCOMO, a long-form conversation benchmark with single-modal textual input, MIRIX attains state-of-the-art performance of 85.4%, far surpassing existing baselines. These results show that MIRIX sets a new performance standard for memory-augmented LLM agents. To allow users to experience our memory system, we provide a packaged application powered by MIRIX. It monitors the screen in real time, builds a personalized memory base, and offers intuitive visualization and secure local storage to ensure privacy.

  • 2 authors
·
Jul 10 1

Intelligent Design 4.0: Paradigm Evolution Toward the Agentic AI Era

Research and practice in Intelligent Design (ID) have significantly enhanced engineering innovation, efficiency, quality, and productivity over recent decades, fundamentally reshaping how engineering designers think, behave, and interact with design processes. The recent emergence of Foundation Models (FMs), particularly Large Language Models (LLMs), has demonstrated general knowledge-based reasoning capabilities, and open new paths and avenues for further transformation in engineering design. In this context, this paper introduces Intelligent Design 4.0 (ID 4.0) as an emerging paradigm empowered by agentic AI systems. We review the historical evolution of ID across four distinct stages: rule-based expert systems, task-specific machine learning models, large-scale foundation AI models, and the recent emerging paradigm of multi-agent collaboration. We propose a conceptual framework for ID 4.0 and discuss its potential to support end-to-end automation of engineering design processes through coordinated, autonomous multi-agent-based systems. Furthermore, we discuss future perspectives to enhance and fully realize ID 4.0's potential, including more complex design scenarios, more practical design implementations, novel agent coordination mechanisms, and autonomous design goal-setting with better human value alignment. In sum, these insights lay a foundation for advancing Intelligent Design toward greater adaptivity, autonomy, and effectiveness in addressing increasingly complex design challenges.

  • 5 authors
·
Jun 11

Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning

As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.

alibabagroup alibaba
·
Sep 28 3

LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents

The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.

Dracodes Dracodes
·
Sep 17, 2024 3