- Conservation Laws and the Quantization of Gravity Adopting general frameworks for quantum-classical dynamics, we analyze the interaction between quantum matter and a classical gravitational field. We point out that, assuming conservation of momentum or energy, and assuming that the dynamics obeys Hamiltonian formalism or a particular decomposition property set out in the paper, the classical gravitational field cannot change the momentum or energy of the quantum system, whereas the quantum gravitational field can do so. Drawing upon the fundamental relationship between conservation laws and the quantum properties of objects, our analysis offers new perspectives for the study of quantum gravity and provides a novel interpretation of existing experimental observations, such as free fall. 3 authors · Nov 15, 2023
- Lagrangian Flow Networks for Conservation Laws We introduce Lagrangian Flow Networks (LFlows) for modeling fluid densities and velocities continuously in space and time. By construction, the proposed LFlows satisfy the continuity equation, a PDE describing mass conservation in its differentiable form. Our model is based on the insight that solutions to the continuity equation can be expressed as time-dependent density transformations via differentiable and invertible maps. This follows from classical theory of the existence and uniqueness of Lagrangian flows for smooth vector fields. Hence, we model fluid densities by transforming a base density with parameterized diffeomorphisms conditioned on time. The key benefit compared to methods relying on numerical ODE solvers or PINNs is that the analytic expression of the velocity is always consistent with changes in density. Furthermore, we require neither expensive numerical solvers, nor additional penalties to enforce the PDE. LFlows show higher predictive accuracy in density modeling tasks compared to competing models in 2D and 3D, while being computationally efficient. As a real-world application, we model bird migration based on sparse weather radar measurements. 5 authors · May 26, 2023
- Learning Physical Models that Can Respect Conservation Laws Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation (PDE) information into the learning process. Much of this work has focused on relatively ``easy'' PDE operators (e.g., elliptic and parabolic), with less emphasis on relatively ``hard'' PDE operators (e.g., hyperbolic). Within numerical PDEs, the latter problem class requires control of a type of volume element or conservation constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs. ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance on downstream tasks. 5 authors · Feb 21, 2023
- Electron flow matching for generative reaction mechanism prediction obeying conservation laws Central to our understanding of chemical reactivity is the principle of mass conservation, which is fundamental for ensuring physical consistency, balancing equations, and guiding reaction design. However, data-driven computational models for tasks such as reaction product prediction rarely abide by this most basic constraint. In this work, we recast the problem of reaction prediction as a problem of electron redistribution using the modern deep generative framework of flow matching. Our model, FlowER, overcomes limitations inherent in previous approaches by enforcing exact mass conservation, thereby resolving hallucinatory failure modes, recovering mechanistic reaction sequences for unseen substrate scaffolds, and generalizing effectively to out-of-domain reaction classes with extremely data-efficient fine-tuning. FlowER additionally enables estimation of thermodynamic or kinetic feasibility and manifests a degree of chemical intuition in reaction prediction tasks. This inherently interpretable framework represents a significant step in bridging the gap between predictive accuracy and mechanistic understanding in data-driven reaction outcome prediction. 6 authors · Feb 18
1 Improving AI weather prediction models using global mass and energy conservation schemes Artificial Intelligence (AI) weather prediction (AIWP) models are powerful tools for medium-range forecasts but often lack physical consistency, leading to outputs that violate conservation laws. This study introduces a set of novel physics-based schemes designed to enforce the conservation of global dry air mass, moisture budget, and total atmospheric energy in AIWP models. The schemes are highly modular, allowing for seamless integration into a wide range of AI model architectures. Forecast experiments are conducted to demonstrate the benefit of conservation schemes using FuXi, an example AIWP model, modified and adapted for 1.0-degree grid spacing. Verification results show that the conservation schemes can guide the model in producing forecasts that obey conservation laws. The forecast skills of upper-air and surface variables are also improved, with longer forecast lead times receiving larger benefits. Notably, large performance gains are found in the total precipitation forecasts, owing to the reduction of drizzle bias. The proposed conservation schemes establish a foundation for implementing other physics-based schemes in the future. They also provide a new way to integrate atmospheric domain knowledge into the design and refinement of AIWP models. 4 authors · Jan 9
- ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction Deep neural networks (DNN) have shown great capacity of modeling a dynamical system; nevertheless, they usually do not obey physics constraints such as conservation laws. This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling to endow the invariant properties. ConCerNet consists of two steps: (i) a contrastive learning method to automatically capture the system invariants (i.e. conservation properties) along the trajectory observations; (ii) a neural projection layer to guarantee that the learned dynamics models preserve the learned invariants. We theoretically prove the functional relationship between the learned latent representation and the unknown system invariant function. Experiments show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics by a large margin. With neural network based parameterization and no dependence on prior knowledge, our method can be extended to complex and large-scale dynamics by leveraging an autoencoder. 6 authors · Feb 11, 2023
1 Morpheus: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments Recent advances in image and video generation raise hopes that these models possess world modeling capabilities, the ability to generate realistic, physically plausible videos. This could revolutionize applications in robotics, autonomous driving, and scientific simulation. However, before treating these models as world models, we must ask: Do they adhere to physical conservation laws? To answer this, we introduce Morpheus, a benchmark for evaluating video generation models on physical reasoning. It features 80 real-world videos capturing physical phenomena, guided by conservation laws. Since artificial generations lack ground truth, we assess physical plausibility using physics-informed metrics evaluated with respect to infallible conservation laws known per physical setting, leveraging advances in physics-informed neural networks and vision-language foundation models. Our findings reveal that even with advanced prompting and video conditioning, current models struggle to encode physical principles despite generating aesthetically pleasing videos. All data, leaderboard, and code are open-sourced at our project page. Physics From Video · Apr 3
- Symmetries and Asymptotically Flat Space The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities. 1 authors · Mar 16, 2020
- Scaling physics-informed hard constraints with mixture-of-experts Imposing known physical constraints, such as conservation laws, during neural network training introduces an inductive bias that can improve accuracy, reliability, convergence, and data efficiency for modeling physical dynamics. While such constraints can be softly imposed via loss function penalties, recent advancements in differentiable physics and optimization improve performance by incorporating PDE-constrained optimization as individual layers in neural networks. This enables a stricter adherence to physical constraints. However, imposing hard constraints significantly increases computational and memory costs, especially for complex dynamical systems. This is because it requires solving an optimization problem over a large number of points in a mesh, representing spatial and temporal discretizations, which greatly increases the complexity of the constraint. To address this challenge, we develop a scalable approach to enforce hard physical constraints using Mixture-of-Experts (MoE), which can be used with any neural network architecture. Our approach imposes the constraint over smaller decomposed domains, each of which is solved by an "expert" through differentiable optimization. During training, each expert independently performs a localized backpropagation step by leveraging the implicit function theorem; the independence of each expert allows for parallelization across multiple GPUs. Compared to standard differentiable optimization, our scalable approach achieves greater accuracy in the neural PDE solver setting for predicting the dynamics of challenging non-linear systems. We also improve training stability and require significantly less computation time during both training and inference stages. 3 authors · Feb 20, 2024
- Hard-Constrained Deep Learning for Climate Downscaling The availability of reliable, high-resolution climate and weather data is important to inform long-term decisions on climate adaptation and mitigation and to guide rapid responses to extreme events. Forecasting models are limited by computational costs and, therefore, often generate coarse-resolution predictions. Statistical downscaling, including super-resolution methods from deep learning, can provide an efficient method of upsampling low-resolution data. However, despite achieving visually compelling results in some cases, such models frequently violate conservation laws when predicting physical variables. In order to conserve physical quantities, here we introduce methods that guarantee statistical constraints are satisfied by a deep learning downscaling model, while also improving their performance according to traditional metrics. We compare different constraining approaches and demonstrate their applicability across different neural architectures as well as a variety of climate and weather data sets. Besides enabling faster and more accurate climate predictions through downscaling, we also show that our novel methodologies can improve super-resolution for satellite data and natural images data sets. 8 authors · Aug 8, 2022
- Linking Past and Future Null Infinity in Three Dimensions We provide a mapping between past null and future null infinity in three-dimensional flat space, using symmetry considerations. From this we derive a mapping between the corresponding asymptotic symmetry groups. By studying the metric at asymptotic regions, we find that the mapping is energy preserving and yields an infinite number of conservation laws. 3 authors · Jan 23, 2017
47 What about gravity in video generation? Post-Training Newton's Laws with Verifiable Rewards Recent video diffusion models can synthesize visually compelling clips, yet often violate basic physical laws-objects float, accelerations drift, and collisions behave inconsistently-revealing a persistent gap between visual realism and physical realism. We propose NewtonRewards, the first physics-grounded post-training framework for video generation based on verifiable rewards. Instead of relying on human or VLM feedback, NewtonRewards extracts measurable proxies from generated videos using frozen utility models: optical flow serves as a proxy for velocity, while high-level appearance features serve as a proxy for mass. These proxies enable explicit enforcement of Newtonian structure through two complementary rewards: a Newtonian kinematic constraint enforcing constant-acceleration dynamics, and a mass conservation reward preventing trivial, degenerate solutions. We evaluate NewtonRewards on five Newtonian Motion Primitives (free fall, horizontal/parabolic throw, and ramp sliding down/up) using our newly constructed large-scale benchmark, NewtonBench-60K. Across all primitives in visual and physics metrics, NewtonRewards consistently improves physical plausibility, motion smoothness, and temporal coherence over prior post-training methods. It further maintains strong performance under out-of-distribution shifts in height, speed, and friction. Our results show that physics-grounded verifiable rewards offer a scalable path toward physics-aware video generation. CVLab @ Stony Brook University · Nov 29 2
- ACE: A fast, skillful learned global atmospheric model for climate prediction Existing ML-based atmospheric models are not suitable for climate prediction, which requires long-term stability and physical consistency. We present ACE (AI2 Climate Emulator), a 200M-parameter, autoregressive machine learning emulator of an existing comprehensive 100-km resolution global atmospheric model. The formulation of ACE allows evaluation of physical laws such as the conservation of mass and moisture. The emulator is stable for 100 years, nearly conserves column moisture without explicit constraints and faithfully reproduces the reference model's climate, outperforming a challenging baseline on over 90% of tracked variables. ACE requires nearly 100x less wall clock time and is 100x more energy efficient than the reference model using typically available resources. Without fine-tuning, ACE can stably generalize to a previously unseen historical sea surface temperature dataset. 12 authors · Oct 3, 2023
- The information-theoretic foundation of thermodynamic work extraction In this paper I apply newly-proposed information-theoretic principles to thermodynamic work extraction. I show that if it is possible to extract work deterministically from a physical system prepared in any one of a set of states, then those states must be distinguishable from one another. This result is formulated independently of scale and of particular dynamical laws; it also provides a novel connection between thermodynamics and information theory, established via the law of conservation of energy (rather than the second law of thermodynamics). Albeit compatible with these conclusions, existing thermodynamics approaches cannot provide a result of such generality, because they are scale-dependent (relying on ensembles or coarse-graining) or tied to particular dynamical laws. This paper thus provides a broader foundation for thermodynamics, with implications for the theory of von Neumann's universal constructor 1 authors · Sep 9, 2020
- The discrete generalized exchange-driven system We study a discrete model for generalized exchange-driven growth in which the particle exchanged between two clusters is not limited to be of size one. This set of models include as special cases the usual exchange-driven growth system and the coagulation-fragmentation system with binary fragmentation. Under reasonable general condition on the rate coefficients we establish the existence of admissible solutions, meaning solutions that are obtained as appropriate limit of solutions to a finite-dimensional truncation of the infinite-dimensional ODE. For these solutions we prove that, in the class of models we call isolated both the total number of particles and the total mass are conserved, whereas in those models we can non-isolated only the mass is conserved. Additionally, under more restrictive growth conditions for the rate equations we obtain uniqueness of solutions to the initial value problems. 4 authors · Aug 1, 2024
- Anelastic approximation for the degenerate compressible Navier--Stokes equations revisited In this paper, we revisit the joint low-Mach and low-Frode number limit for the compressible Navier-Stokes equations with degenerate, density-dependent viscosity. Employing the relative entropy framework based on the concept of κ-entropy, we rigorously justify the convergence of weak solutions toward the generalized anelastic system in a three-dimensional periodic domain for well-prepared initial data. For general ill-prepared initial data, we establish a similar convergence result in the whole space, relying essentially on dispersive estimates for acoustic waves. Compared with the work of Fanelli and Zatorska [Commun. Math. Phys., 400 (2023), pp. 1463-1506], our analysis is conducted for the standard isentropic pressure law, thereby eliminating the need for the cold pressure term that played a crucial role in the previous approach. To the best of our knowledge, this is the first rigorous singular limit result for the compressible Navier-Stokes equations with degenerate viscosity that requires no additional regularization of the system. 4 authors · Nov 27