new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Frontier Models are Capable of In-context Scheming

Frontier models are increasingly trained and deployed as autonomous agent. One safety concern is that AI agents might covertly pursue misaligned goals, hiding their true capabilities and objectives - also known as scheming. We study whether models have the capability to scheme in pursuit of a goal that we provide in-context and instruct the model to strongly follow. We evaluate frontier models on a suite of six agentic evaluations where models are instructed to pursue goals and are placed in environments that incentivize scheming. Our results show that o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1 405B all demonstrate in-context scheming capabilities. They recognize scheming as a viable strategy and readily engage in such behavior. For example, models strategically introduce subtle mistakes into their responses, attempt to disable their oversight mechanisms, and even exfiltrate what they believe to be their model weights to external servers. Additionally, this deceptive behavior proves persistent. When o1 has engaged in scheming, it maintains its deception in over 85% of follow-up questions and often remains deceptive in multi-turn interrogations. Analysis of the models' chains-of-thought reveals that models explicitly reason about these deceptive strategies, providing evidence that the scheming behavior is not accidental. Surprisingly, we also find rare instances where models engage in scheming when only given a goal, without being strongly nudged to pursue it. We observe cases where Claude 3.5 Sonnet strategically underperforms in evaluations in pursuit of being helpful, a goal that was acquired during training rather than in-context. Our findings demonstrate that frontier models now possess capabilities for basic in-context scheming, making the potential of AI agents to engage in scheming behavior a concrete rather than theoretical concern.

  • 6 authors
·
Dec 6, 2024

MedGemma Technical Report

Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.

  • 80 authors
·
Jul 7, 2025 2

SuffixDecoding: Extreme Speculative Decoding for Emerging AI Applications

Speculative decoding is widely adopted to reduce latency in large language model (LLM) inference by leveraging smaller draft models capable of handling diverse user tasks. However, emerging AI applications, such as LLM-based agents, present unique workload characteristics: instead of diverse independent requests, agentic frameworks typically submit repetitive inference requests, such as multi-agent pipelines performing similar subtasks or self-refinement loops iteratively enhancing outputs. These workloads result in long and highly predictable sequences, which current speculative decoding methods do not effectively exploit. To address this gap, we introduce SuffixDecoding, a novel method that utilizes efficient suffix trees to cache long token sequences from prompts and previous outputs. By adaptively speculating more tokens when acceptance likelihood is high and fewer when it is low, SuffixDecoding effectively exploits opportunities for longer speculations while conserving computation when those opportunities are limited. Evaluations on agentic benchmarks, including SWE-Bench and Text-to-SQL, demonstrate that SuffixDecoding achieves speedups of up to 5.3times, outperforming state-of-the-art methods -- 2.8times faster than model-based approaches like EAGLE-2/3 and 1.9times faster than model-free approaches such as Token Recycling. SuffixDecoding is open-sourced at https://github.com/snowflakedb/ArcticInference

  • 4 authors
·
Nov 7, 2024

Large Language Models Often Know When They Are Being Evaluated

If AI models can detect when they are being evaluated, the effectiveness of evaluations might be compromised. For example, models could have systematically different behavior during evaluations, leading to less reliable benchmarks for deployment and governance decisions. We investigate whether frontier language models can accurately classify transcripts based on whether they originate from evaluations or real-world deployment, a capability we call evaluation awareness. To achieve this, we construct a diverse benchmark of 1,000 prompts and transcripts from 61 distinct datasets. These span public benchmarks (e.g., MMLU, SWEBench), real-world deployment interactions, and agent trajectories from scaffolding frameworks (e.g., web-browsing agents). Frontier models clearly demonstrate above-random evaluation awareness (Gemini-2.5-Pro reaches an AUC of 0.83), but do not yet surpass our simple human baseline (AUC of 0.92). Furthermore, both AI models and humans are better at identifying evaluations in agentic settings compared to chat settings. Additionally, we test whether models can identify the purpose of the evaluation. Under multiple-choice and open-ended questioning, AI models far outperform random chance in identifying what an evaluation is testing for. Our results indicate that frontier models already exhibit a substantial, though not yet superhuman, level of evaluation-awareness. We recommend tracking this capability in future models.

  • 5 authors
·
May 28, 2025

A Comprehensive Survey on Reinforcement Learning-based Agentic Search: Foundations, Roles, Optimizations, Evaluations, and Applications

The advent of large language models (LLMs) has transformed information access and reasoning through open-ended natural language interaction. However, LLMs remain limited by static knowledge, factual hallucinations, and the inability to retrieve real-time or domain-specific information. Retrieval-Augmented Generation (RAG) mitigates these issues by grounding model outputs in external evidence, but traditional RAG pipelines are often single turn and heuristic, lacking adaptive control over retrieval and reasoning. Recent advances in agentic search address these limitations by enabling LLMs to plan, retrieve, and reflect through multi-step interaction with search environments. Within this paradigm, reinforcement learning (RL) offers a powerful mechanism for adaptive and self-improving search behavior. This survey provides the first comprehensive overview of RL-based agentic search, organizing the emerging field along three complementary dimensions: (i) What RL is for (functional roles), (ii) How RL is used (optimization strategies), and (iii) Where RL is applied (scope of optimization). We summarize representative methods, evaluation protocols, and applications, and discuss open challenges and future directions toward building reliable and scalable RL driven agentic search systems. We hope this survey will inspire future research on the integration of RL and agentic search. Our repository is available at https://github.com/ventr1c/Awesome-RL-based-Agentic-Search-Papers.

  • 10 authors
·
Oct 19, 2025

4KAgent: Agentic Any Image to 4K Super-Resolution

We present 4KAgent, a unified agentic super-resolution generalist system designed to universally upscale any image to 4K resolution (and even higher, if applied iteratively). Our system can transform images from extremely low resolutions with severe degradations, for example, highly distorted inputs at 256x256, into crystal-clear, photorealistic 4K outputs. 4KAgent comprises three core components: (1) Profiling, a module that customizes the 4KAgent pipeline based on bespoke use cases; (2) A Perception Agent, which leverages vision-language models alongside image quality assessment experts to analyze the input image and make a tailored restoration plan; and (3) A Restoration Agent, which executes the plan, following a recursive execution-reflection paradigm, guided by a quality-driven mixture-of-expert policy to select the optimal output for each step. Additionally, 4KAgent embeds a specialized face restoration pipeline, significantly enhancing facial details in portrait and selfie photos. We rigorously evaluate our 4KAgent across 11 distinct task categories encompassing a total of 26 diverse benchmarks, setting new state-of-the-art on a broad spectrum of imaging domains. Our evaluations cover natural images, portrait photos, AI-generated content, satellite imagery, fluorescence microscopy, and medical imaging like fundoscopy, ultrasound, and X-ray, demonstrating superior performance in terms of both perceptual (e.g., NIQE, MUSIQ) and fidelity (e.g., PSNR) metrics. By establishing a novel agentic paradigm for low-level vision tasks, we aim to catalyze broader interest and innovation within vision-centric autonomous agents across diverse research communities. We will release all the code, models, and results at: https://4kagent.github.io.

  • 13 authors
·
Jul 9, 2025 4

FinReflectKG: Agentic Construction and Evaluation of Financial Knowledge Graphs

The financial domain poses unique challenges for knowledge graph (KG) construction at scale due to the complexity and regulatory nature of financial documents. Despite the critical importance of structured financial knowledge, the field lacks large-scale, open-source datasets capturing rich semantic relationships from corporate disclosures. We introduce an open-source, large-scale financial knowledge graph dataset built from the latest annual SEC 10-K filings of all S and P 100 companies - a comprehensive resource designed to catalyze research in financial AI. We propose a robust and generalizable knowledge graph (KG) construction framework that integrates intelligent document parsing, table-aware chunking, and schema-guided iterative extraction with a reflection-driven feedback loop. Our system incorporates a comprehensive evaluation pipeline, combining rule-based checks, statistical validation, and LLM-as-a-Judge assessments to holistically measure extraction quality. We support three extraction modes - single-pass, multi-pass, and reflection-agent-based - allowing flexible trade-offs between efficiency, accuracy, and reliability based on user requirements. Empirical evaluations demonstrate that the reflection-agent-based mode consistently achieves the best balance, attaining a 64.8 percent compliance score against all rule-based policies (CheckRules) and outperforming baseline methods (single-pass and multi-pass) across key metrics such as precision, comprehensiveness, and relevance in LLM-guided evaluations.

  • 5 authors
·
Aug 25, 2025 1

AITEE -- Agentic Tutor for Electrical Engineering

Intelligent tutoring systems combined with large language models offer a promising approach to address students' diverse needs and promote self-efficacious learning. While large language models possess good foundational knowledge of electrical engineering basics, they remain insufficiently capable of addressing specific questions about electrical circuits. In this paper, we present AITEE, an agent-based tutoring system for electrical engineering designed to accompany students throughout their learning process, offer individualized support, and promote self-directed learning. AITEE supports both hand-drawn and digital circuits through an adapted circuit reconstruction process, enabling natural interaction with students. Our novel graph-based similarity measure identifies relevant context from lecture materials through a retrieval augmented generation approach, while parallel Spice simulation further enhances accuracy in applying solution methodologies. The system implements a Socratic dialogue to foster learner autonomy through guided questioning. Experimental evaluations demonstrate that AITEE significantly outperforms baseline approaches in domain-specific knowledge application, with even medium-sized LLM models showing acceptable performance. Our results highlight the potential of agentic tutors to deliver scalable, personalized, and effective learning environments for electrical engineering education.

  • 3 authors
·
May 27, 2025 2

Empowering Agentic Video Analytics Systems with Video Language Models

AI-driven video analytics has become increasingly pivotal across diverse domains. However, existing systems are often constrained to specific, predefined tasks, limiting their adaptability in open-ended analytical scenarios. The recent emergence of Video-Language Models (VLMs) as transformative technologies offers significant potential for enabling open-ended video understanding, reasoning, and analytics. Nevertheless, their limited context windows present challenges when processing ultra-long video content, which is prevalent in real-world applications. To address this, we introduce AVAS, a VLM-powered system designed for open-ended, advanced video analytics. AVAS incorporates two key innovations: (1) the near real-time construction of Event Knowledge Graphs (EKGs) for efficient indexing of long or continuous video streams, and (2) an agentic retrieval-generation mechanism that leverages EKGs to handle complex and diverse queries. Comprehensive evaluations on public benchmarks, LVBench and VideoMME-Long, demonstrate that AVAS achieves state-of-the-art performance, attaining 62.3% and 64.1% accuracy, respectively, significantly surpassing existing VLM and video Retrieval-Augmented Generation (RAG) systems. Furthermore, to evaluate video analytics in ultra-long and open-world video scenarios, we introduce a new benchmark, AVAS-100. This benchmark comprises 8 videos, each exceeding 10 hours in duration, along with 120 manually annotated, diverse, and complex question-answer pairs. On AVAS-100, AVAS achieves top-tier performance with an accuracy of 75.8%.

  • 8 authors
·
Apr 30, 2025

Toward Ultra-Long-Horizon Agentic Science: Cognitive Accumulation for Machine Learning Engineering

The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.

DeepCode: Open Agentic Coding

Recent advances in large language models (LLMs) have given rise to powerful coding agents, making it possible for code assistants to evolve into code engineers. However, existing methods still face significant challenges in achieving high-fidelity document-to-codebase synthesis--such as scientific papers to code--primarily due to a fundamental conflict between information overload and the context bottlenecks of LLMs. In this work, we introduce DeepCode, a fully autonomous framework that fundamentally addresses this challenge through principled information-flow management. By treating repository synthesis as a channel optimization problem, DeepCode seamlessly orchestrates four information operations to maximize task-relevant signals under finite context budgets: source compression via blueprint distillation, structured indexing using stateful code memory, conditional knowledge injection via retrieval-augmented generation, and closed-loop error correction. Extensive evaluations on the PaperBench benchmark demonstrate that DeepCode achieves state-of-the-art performance, decisively outperforming leading commercial agents such as Cursor and Claude Code, and crucially, surpassing PhD-level human experts from top institutes on key reproduction metrics. By systematically transforming paper specifications into production-grade implementations comparable to human expert quality, this work establishes new foundations for autonomous scientific reproduction that can accelerate research evaluation and discovery.

  • 5 authors
·
Dec 8, 2025 2

Youtu-LLM: Unlocking the Native Agentic Potential for Lightweight Large Language Models

We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.

tencent Tencent
·
Dec 30, 2025 3

Towards Safety Reasoning in LLMs: AI-agentic Deliberation for Policy-embedded CoT Data Creation

Safety reasoning is a recent paradigm where LLMs reason over safety policies before generating responses, thereby mitigating limitations in existing safety measures such as over-refusal and jailbreak vulnerabilities. However, implementing this paradigm is challenging due to the resource-intensive process of creating high-quality policy-embedded chain-of-thought (CoT) datasets while ensuring reasoning remains accurate and free from hallucinations or policy conflicts. To tackle this, we propose AIDSAFE: Agentic Iterative Deliberation for Safety Reasoning, a novel data generation recipe that leverages multi-agent deliberation to iteratively expand reasoning on safety policies. A data refiner stage in AIDSAFE ensures high-quality outputs by eliminating repetitive, redundant, and deceptive thoughts. AIDSAFE-generated CoTs provide a strong foundation for supervised fine-tuning (SFT)-based safety training. Additionally, to address the need of preference data in alignment stages, such as DPO training, we introduce a supplemental recipe that uses belief augmentation to create distinct selected and rejected CoT samples. Our evaluations demonstrate that AIDSAFE-generated CoTs achieve superior policy adherence and reasoning quality. Consequently, we show that fine-tuning open-source LLMs on these CoTs can significantly improve safety generalization and jailbreak robustness while maintaining acceptable utility and over-refusal accuracy. AIDSAFE-generated CoT datasets can be found here: https://huggingface.co/datasets/AmazonScience/AIDSAFE

  • 9 authors
·
May 27, 2025 2

An Agentic System for Rare Disease Diagnosis with Traceable Reasoning

Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.

  • 12 authors
·
Jun 25, 2025 1

RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems

We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.

  • 14 authors
·
Aug 2, 2025 2

PropensityBench: Evaluating Latent Safety Risks in Large Language Models via an Agentic Approach

Recent advances in Large Language Models (LLMs) have sparked concerns over their potential to acquire and misuse dangerous or high-risk capabilities, posing frontier risks. Current safety evaluations primarily test for what a model can do - its capabilities - without assessing what it would do if endowed with high-risk capabilities. This leaves a critical blind spot: models may strategically conceal capabilities or rapidly acquire them, while harboring latent inclinations toward misuse. We argue that propensity - the likelihood of a model to pursue harmful actions if empowered - is a critical, yet underexplored, axis of safety evaluation. We present PropensityBench, a novel benchmark framework that assesses the proclivity of models to engage in risky behaviors when equipped with simulated dangerous capabilities using proxy tools. Our framework includes 5,874 scenarios with 6,648 tools spanning four high-risk domains: cybersecurity, self-proliferation, biosecurity, and chemical security. We simulate access to powerful capabilities via a controlled agentic environment and evaluate the models' choices under varying operational pressures that reflect real-world constraints or incentives models may encounter, such as resource scarcity or gaining more autonomy. Across open-source and proprietary frontier models, we uncover 9 alarming signs of propensity: models frequently choose high-risk tools when under pressure, despite lacking the capability to execute such actions unaided. These findings call for a shift from static capability audits toward dynamic propensity assessments as a prerequisite for deploying frontier AI systems safely. Our code is available at https://github.com/scaleapi/propensity-evaluation.

  • 7 authors
·
Nov 24, 2025

MUA-RL: Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use

With the recent rapid advancement of Agentic Intelligence, agentic tool use in LLMs has become increasingly important. During multi-turn interactions between agents and users, the dynamic, uncertain, and stochastic nature of user demands poses significant challenges to the agent's tool invocation capabilities. Agents are no longer expected to simply call tools to deliver a result; rather, they must iteratively refine their understanding of user needs through communication while simultaneously invoking tools to resolve user queries. Existing reinforcement learning (RL) approaches for tool use lack the integration of genuinely dynamic users during the RL training process. To bridge this gap, we introduce MUA-RL (Multi-turn User-interacting Agent Reinforcement Learning for agentic tool use), a novel reinforcement learning framework that, for the first time in the field of agentic tool use, integrates LLM-simulated users into the reinforcement learning loop. MUA-RL aims to enable autonomous learning of models to communicate with users efficiently and use various tools to solve practical problems in dynamic multi-turn interactions. Evaluations are done on several multi-turn tool-using benchmarks (see Figure 1). Specifically, MUA-RL-32B achieves 67.3 on TAU2 Retail, 45.4 on TAU2 Airline, 28.3 on TAU2 Telecom, 28.4 on BFCL-V3 Multi Turn, and 82.5 on ACEBench Agent -- outperforming or matching the performance of larger open-source models such as DeepSeek-V3-0324 and Qwen3-235B-A22B in non-thinking settings.

  • 9 authors
·
Aug 26, 2025

Beyond Pixels: Visual Metaphor Transfer via Schema-Driven Agentic Reasoning

A visual metaphor constitutes a high-order form of human creativity, employing cross-domain semantic fusion to transform abstract concepts into impactful visual rhetoric. Despite the remarkable progress of generative AI, existing models remain largely confined to pixel-level instruction alignment and surface-level appearance preservation, failing to capture the underlying abstract logic necessary for genuine metaphorical generation. To bridge this gap, we introduce the task of Visual Metaphor Transfer (VMT), which challenges models to autonomously decouple the "creative essence" from a reference image and re-materialize that abstract logic onto a user-specified target subject. We propose a cognitive-inspired, multi-agent framework that operationalizes Conceptual Blending Theory (CBT) through a novel Schema Grammar ("G"). This structured representation decouples relational invariants from specific visual entities, providing a rigorous foundation for cross-domain logic re-instantiation. Our pipeline executes VMT through a collaborative system of specialized agents: a perception agent that distills the reference into a schema, a transfer agent that maintains generic space invariance to discover apt carriers, a generation agent for high-fidelity synthesis and a hierarchical diagnostic agent that mimics a professional critic, performing closed-loop backtracking to identify and rectify errors across abstract logic, component selection, and prompt encoding. Extensive experiments and human evaluations demonstrate that our method significantly outperforms SOTA baselines in metaphor consistency, analogy appropriateness, and visual creativity, paving the way for automated high-impact creative applications in advertising and media. Source code will be made publicly available.

tencent Tencent
·
Feb 1 1

Doctor-R1: Mastering Clinical Inquiry with Experiential Agentic Reinforcement Learning

The professionalism of a human doctor in outpatient service depends on two core abilities: the ability to make accurate medical decisions and the medical consultation skill to conduct strategic, empathetic patient inquiry. Existing Large Language Models (LLMs) have achieved remarkable accuracy on medical decision-making benchmarks. However, they often lack the ability to conduct the strategic and empathetic consultation, which is essential for real-world clinical scenarios. To address this gap, we propose Doctor-R1, an AI doctor agent trained to master both of the capabilities by ask high-yield questions and conduct strategic multi-turn inquiry to guide decision-making. Our framework introduces three key components: a multi-agent interactive environment, a two-tiered reward architecture that separately optimizes clinical decision-making and communicative inquiry skills, and an experience repository to ground policy learning in high-quality prior trajectories. We evaluate Doctor-R1 on OpenAI's HealthBench and MAQuE, assessed across multi-facet metrics, such as communication quality, user experience, and task accuracy. Remarkably, Doctor-R1 surpasses state-of-the-art open-source specialized LLMs by a substantial margin with higher parameter efficiency and outperforms powerful proprietary models. Furthermore, the human evaluations show a strong preference for Doctor-R1 to generate human-preferred clinical dialogue, demonstrating the effectiveness of the framework.

  • 5 authors
·
Oct 5, 2025

An Empirical Study of Testing Practices in Open Source AI Agent Frameworks and Agentic Applications

Foundation model (FM)-based AI agents are rapidly gaining adoption across diverse domains, but their inherent non-determinism and non-reproducibility pose testing and quality assurance challenges. While recent benchmarks provide task-level evaluations, there is limited understanding of how developers verify the internal correctness of these agents during development. To address this gap, we conduct the first large-scale empirical study of testing practices in the AI agent ecosystem, analyzing 39 open-source agent frameworks and 439 agentic applications. We identify ten distinct testing patterns and find that novel, agent-specific methods like DeepEval are seldom used (around 1%), while traditional patterns like negative and membership testing are widely adapted to manage FM uncertainty. By mapping these patterns to canonical architectural components of agent frameworks and agentic applications, we uncover a fundamental inversion of testing effort: deterministic components like Resource Artifacts (tools) and Coordination Artifacts (workflows) consume over 70% of testing effort, while the FM-based Plan Body receives less than 5%. Crucially, this reveals a critical blind spot, as the Trigger component (prompts) remains neglected, appearing in around 1% of all tests. Our findings offer the first empirical testing baseline in FM-based agent frameworks and agentic applications, revealing a rational but incomplete adaptation to non-determinism. To address it, framework developers should improve support for novel testing methods, application developers must adopt prompt regression testing, and researchers should explore barriers to adoption. Strengthening these practices is vital for building more robust and dependable AI agents.

  • 6 authors
·
Sep 23, 2025 2

DeepTravel: An End-to-End Agentic Reinforcement Learning Framework for Autonomous Travel Planning Agents

Travel planning (TP) agent has recently worked as an emerging building block to interact with external tools and resources for travel itinerary generation, ensuring enjoyable user experience. Despite its benefits, existing studies rely on hand craft prompt and fixed agent workflow, hindering more flexible and autonomous TP agent. This paper proposes DeepTravel, an end to end agentic reinforcement learning framework for building autonomous travel planning agent, capable of autonomously planning, executing tools, and reflecting on tool responses to explore, verify, and refine intermediate actions in multi step reasoning. To achieve this, we first construct a robust sandbox environment by caching transportation, accommodation and POI data, facilitating TP agent training without being constrained by real world APIs limitations (e.g., inconsistent outputs). Moreover, we develop a hierarchical reward modeling system, where a trajectory level verifier first checks spatiotemporal feasibility and filters unsatisfied travel itinerary, and then the turn level verifier further validate itinerary detail consistency with tool responses, enabling efficient and precise reward service. Finally, we propose the reply augmented reinforcement learning method that enables TP agent to periodically replay from a failures experience buffer, emerging notable agentic capacity. We deploy trained TP agent on DiDi Enterprise Solutions App and conduct comprehensive online and offline evaluations, demonstrating that DeepTravel enables small size LLMs (e.g., Qwen3 32B) to significantly outperform existing frontier LLMs such as OpenAI o1, o3 and DeepSeek R1 in travel planning tasks.

Didichuxing Didi Chuxing
·
Sep 26, 2025 2

Small Language Models for Agentic Systems: A Survey of Architectures, Capabilities, and Deployment Trade offs

Small language models (SLMs; 1-12B params, sometimes up to 20B) are sufficient and often superior for agentic workloads where the objective is schema- and API-constrained accuracy rather than open-ended generation. We synthesize recent evidence across open and proprietary SLMs (Phi-4-Mini, Qwen-2.5-7B, Gemma-2-9B, Llama-3.2-1B/3B, Ministral-3B/8B, Apple on-device 3B, DeepSeek-R1-Distill) and connect it to modern evaluations (BFCL v3/v4, StableToolBench) and serving stacks (vLLM, SGLang, TensorRT-LLM) paired with guided decoding libraries (XGrammar, Outlines). We formalize SLM-default, LLM-fallback systems with uncertainty-aware routing and verifier cascades, and propose engineering metrics that reflect real production goals: cost per successful task (CPS), schema validity rate, executable call rate, p50/p95 latency, and energy per request. Guided decoding, strict JSON Schema outputs, and validator-first tool execution close much of the capability gap with larger models and often let SLMs match or surpass LLMs on tool use, function calling, and RAG at 10x-100x lower token cost with materially better latency and energy. We provide design patterns for agent stacks that prioritize SLMs: schema-first prompting, type-safe function registries, confidence scoring with verifier rollups, and lightweight adaptation via LoRA/QLoRA. We also delineate limits where fallback remains valuable (open-domain reasoning and some long-horizon planning). The result is a practical blueprint for building fast, inexpensive, and reliable agents that default to SLMs while preserving headroom with targeted LLM assistance. Keywords: small language models, agents, function calling, structured outputs, JSON Schema, guided decoding, LoRA/QLoRA, routing, energy efficiency, edge inference

  • 2 authors
·
Oct 4, 2025

Toward Edge General Intelligence with Agentic AI and Agentification: Concepts, Technologies, and Future Directions

The rapid expansion of sixth-generation (6G) wireless networks and the Internet of Things (IoT) has catalyzed the evolution from centralized cloud intelligence towards decentralized edge general intelligence. However, traditional edge intelligence methods, characterized by static models and limited cognitive autonomy, fail to address the dynamic, heterogeneous, and resource-constrained scenarios inherent to emerging edge networks. Agentic artificial intelligence (Agentic AI) emerges as a transformative solution, enabling edge systems to autonomously perceive multimodal environments, reason contextually, and adapt proactively through continuous perception-reasoning-action loops. In this context, the agentification of edge intelligence serves as a key paradigm shift, where distributed entities evolve into autonomous agents capable of collaboration and continual adaptation. This paper presents a comprehensive survey dedicated to Agentic AI and agentification frameworks tailored explicitly for edge general intelligence. First, we systematically introduce foundational concepts and clarify distinctions from traditional edge intelligence paradigms. Second, we analyze important enabling technologies, including compact model compression, energy-aware computing strategies, robust connectivity frameworks, and advanced knowledge representation and reasoning mechanisms. Third, we provide representative case studies demonstrating Agentic AI's capabilities in low-altitude economy networks, intent-driven networking, vehicular networks, and human-centric service provisioning, supported by numerical evaluations. Furthermore, we identify current research challenges, review emerging open-source platforms, and highlight promising future research directions to guide robust, scalable, and trustworthy Agentic AI deployments for next-generation edge environments.

  • 13 authors
·
Aug 26, 2025

A Safety and Security Framework for Real-World Agentic Systems

This paper introduces a dynamic and actionable framework for securing agentic AI systems in enterprise deployment. We contend that safety and security are not merely fixed attributes of individual models but also emergent properties arising from the dynamic interactions among models, orchestrators, tools, and data within their operating environments. We propose a new way of identification of novel agentic risks through the lens of user safety. Although, for traditional LLMs and agentic models in isolation, safety and security has a clear separation, through the lens of safety in agentic systems, they appear to be connected. Building on this foundation, we define an operational agentic risk taxonomy that unifies traditional safety and security concerns with novel, uniquely agentic risks, including tool misuse, cascading action chains, and unintended control amplification among others. At the core of our approach is a dynamic agentic safety and security framework that operationalizes contextual agentic risk management by using auxiliary AI models and agents, with human oversight, to assist in contextual risk discovery, evaluation, and mitigation. We further address one of the most challenging aspects of safety and security of agentic systems: risk discovery through sandboxed, AI-driven red teaming. We demonstrate the framework effectiveness through a detailed case study of NVIDIA flagship agentic research assistant, AI-Q Research Assistant, showcasing practical, end-to-end safety and security evaluations in complex, enterprise-grade agentic workflows. This risk discovery phase finds novel agentic risks that are then contextually mitigated. We also release the dataset from our case study, containing traces of over 10,000 realistic attack and defense executions of the agentic workflow to help advance research in agentic safety.

  • 12 authors
·
Nov 26, 2025

MemEvolve: Meta-Evolution of Agent Memory Systems

Self-evolving memory systems are unprecedentedly reshaping the evolutionary paradigm of large language model (LLM)-based agents. Prior work has predominantly relied on manually engineered memory architectures to store trajectories, distill experience, and synthesize reusable tools, enabling agents to evolve on the fly within environment interactions. However, this paradigm is fundamentally constrained by the staticity of the memory system itself: while memory facilitates agent-level evolving, the underlying memory architecture cannot be meta-adapted to diverse task contexts. To address this gap, we propose MemEvolve, a meta-evolutionary framework that jointly evolves agents' experiential knowledge and their memory architecture, allowing agent systems not only to accumulate experience but also to progressively refine how they learn from it. To ground MemEvolve in prior research and foster openness in future self-evolving systems, we introduce EvolveLab, a unified self-evolving memory codebase that distills twelve representative memory systems into a modular design space (encode, store, retrieve, manage), providing both a standardized implementation substrate and a fair experimental arena. Extensive evaluations on four challenging agentic benchmarks demonstrate that MemEvolve achieves (I) substantial performance gains, improving frameworks such as SmolAgent and Flash-Searcher by up to 17.06%; and (II) strong cross-task and cross-LLM generalization, designing memory architectures that transfer effectively across diverse benchmarks and backbone models.

  • 8 authors
·
Dec 21, 2025 2

AgentIF-OneDay: A Task-level Instruction-Following Benchmark for General AI Agents in Daily Scenarios

The capacity of AI agents to effectively handle tasks of increasing duration and complexity continues to grow, demonstrating exceptional performance in coding, deep research, and complex problem-solving evaluations. However, in daily scenarios, the perception of these advanced AI capabilities among general users remains limited. We argue that current evaluations prioritize increasing task difficulty without sufficiently addressing the diversity of agentic tasks necessary to cover the daily work, life, and learning activities of a broad demographic. To address this, we propose AgentIF-OneDay, aimed at determining whether general users can utilize natural language instructions and AI agents to complete a diverse array of daily tasks. These tasks require not only solving problems through dialogue but also understanding various attachment types and delivering tangible file-based results. The benchmark is structured around three user-centric categories: Open Workflow Execution, which assesses adherence to explicit and complex workflows; Latent Instruction, which requires agents to infer implicit instructions from attachments; and Iterative Refinement, which involves modifying or expanding upon ongoing work. We employ instance-level rubrics and a refined evaluation pipeline that aligns LLM-based verification with human judgment, achieving an 80.1% agreement rate using Gemini-3-Pro. AgentIF-OneDay comprises 104 tasks covering 767 scoring points. We benchmarked four leading general AI agents and found that agent products built based on APIs and ChatGPT agents based on agent RL remain in the first tier simultaneously. Leading LLM APIs and open-source models have internalized agentic capabilities, enabling AI application teams to develop cutting-edge Agent products.

LongCat-Flash Technical Report

We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat

meituan-longcat LongCat
·
Sep 1, 2025

LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries

Open-source AI libraries are foundational to modern AI systems but pose significant, underexamined risks across security, licensing, maintenance, supply chain integrity, and regulatory compliance. We present LibVulnWatch, a graph-based agentic assessment framework that performs deep, source-grounded evaluations of these libraries. Built on LangGraph, the system coordinates a directed acyclic graph of specialized agents to extract, verify, and quantify risk using evidence from trusted sources such as repositories, documentation, and vulnerability databases. LibVulnWatch generates reproducible, governance-aligned scores across five critical domains, publishing them to a public leaderboard for longitudinal ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our system covers up to 88% of OpenSSF Scorecard checks while uncovering up to 19 additional risks per library. These include critical Remote Code Execution (RCE) vulnerabilities, absent Software Bills of Materials (SBOMs), licensing constraints, undocumented telemetry, and widespread gaps in regulatory documentation and auditability. By translating high-level governance principles into practical, verifiable metrics, LibVulnWatch advances technical AI governance with a scalable, transparent mechanism for continuous supply chain risk assessment and informed library selection.

  • 10 authors
·
May 13, 2025

Orak: A Foundational Benchmark for Training and Evaluating LLM Agents on Diverse Video Games

Large Language Model (LLM) agents are reshaping the game industry, particularly with more intelligent and human-preferable game characters. However, existing game benchmarks fall short of practical needs: they lack evaluations of diverse LLM capabilities across various game genres, studies of agentic modules crucial for complex gameplay, and fine-tuning datasets for aligning pre-trained LLMs into gaming agents. To fill these gaps, we present \benchname{}, a foundational benchmark designed to train and evaluate LLM agents across diverse real-world video games. Unlike existing benchmarks, Orak includes 12 popular video games spanning all major genres, enabling comprehensive studies of LLM capabilities and agentic modules essential for intricate game scenarios. To support consistent evaluation of LLMs, we introduce a plug-and-play interface based on Model Context Protocol (MCP) that enables LLMs to seamlessly connect with games and manipulate agentic modules. Additionally, we propose a fine-tuning dataset, consisting of LLM gameplay trajectories across diverse game genres. Orak offers a comprehensive evaluation framework, encompassing general game score leaderboards, LLM battle arenas, and in-depth analyses of visual input state, agentic strategies, and fine-tuning effects, establishing a foundation towards building generic gaming agents. Code is available at https://github.com/krafton-ai/Orak.

  • 16 authors
·
Jun 4, 2025 2

RAGalyst: Automated Human-Aligned Agentic Evaluation for Domain-Specific RAG

Retrieval-Augmented Generation (RAG) is a critical technique for grounding Large Language Models (LLMs) in factual evidence, yet evaluating RAG systems in specialized, safety-critical domains remains a significant challenge. Existing evaluation frameworks often rely on heuristic-based metrics that fail to capture domain-specific nuances and other works utilize LLM-as-a-Judge approaches that lack validated alignment with human judgment. This paper introduces RAGalyst, an automated, human-aligned agentic framework designed for the rigorous evaluation of domain-specific RAG systems. RAGalyst features an agentic pipeline that generates high-quality, synthetic question-answering (QA) datasets from source documents, incorporating an agentic filtering step to ensure data fidelity. The framework refines two key LLM-as-a-Judge metrics-Answer Correctness and Answerability-using prompt optimization to achieve a strong correlation with human annotations. Applying this framework to evaluate various RAG components across three distinct domains (military operations, cybersecurity, and bridge engineering), we find that performance is highly context-dependent. No single embedding model, LLM, or hyperparameter configuration proves universally optimal. Additionally, we provide an analysis on the most common low Answer Correctness reasons in RAG. These findings highlight the necessity of a systematic evaluation framework like RAGalyst, which empowers practitioners to uncover domain-specific trade-offs and make informed design choices for building reliable and effective RAG systems. RAGalyst is available on our Github.

  • 5 authors
·
Nov 6, 2025

AgencyBench: Benchmarking the Frontiers of Autonomous Agents in 1M-Token Real-World Contexts

Large Language Models (LLMs) based autonomous agents demonstrate multifaceted capabilities to contribute substantially to economic production. However, existing benchmarks remain focused on single agentic capability, failing to capture long-horizon real-world scenarios. Moreover, the reliance on human-in-the-loop feedback for realistic tasks creates a scalability bottleneck, hindering automated rollout collection and evaluation. To bridge this gap, we introduce AgencyBench, a comprehensive benchmark derived from daily AI usage, evaluating 6 core agentic capabilities across 32 real-world scenarios, comprising 138 tasks with specific queries, deliverables, and rubrics. These scenarios require an average of 90 tool calls, 1 million tokens, and hours of execution time to resolve. To enable automated evaluation, we employ a user simulation agent to provide iterative feedback, and a Docker sandbox to conduct visual and functional rubric-based assessment. Experiments reveal that closed-source models significantly outperform open-source models (48.4% vs 32.1%). Further analysis reveals significant disparities across models in resource efficiency, feedback-driven self-correction, and specific tool-use preferences. Finally, we investigate the impact of agentic scaffolds, observing that proprietary models demonstrate superior performance within their native ecosystems (e.g., Claude-4.5-Opus via Claude-Agent-SDK), while open-source models exhibit distinct performance peaks, suggesting potential optimization for specific execution frameworks. AgencyBench serves as a critical testbed for next-generation agents, highlighting the necessity of co-optimizing model architecture with agentic frameworks. We believe this work sheds light on the future direction of autonomous agents, and we release the full benchmark and evaluation toolkit at https://github.com/GAIR-NLP/AgencyBench.

GAIR SII - GAIR
·
Jan 16 3

PaperArena: An Evaluation Benchmark for Tool-Augmented Agentic Reasoning on Scientific Literature

Understanding and reasoning on the web-scale scientific literature is a crucial touchstone for large language model (LLM) based agents designed to support complex knowledge-intensive tasks. However, existing works are mainly restricted to tool-free tasks within isolated papers, largely due to the lack of a benchmark for cross-paper reasoning and multi-tool orchestration in real research scenarios. In this work, we propose PaperArena, an evaluation benchmark for agents to address real-world research questions that typically require integrating information across multiple papers with the assistance of external tools. Given a research question, agents should integrate diverse formats across multiple papers through reasoning and interacting with appropriate tools, thereby producing a well-grounded answer. To support standardized evaluation, we provide a modular and extensible platform for agent execution, offering tools such as multimodal parsing, context retrieval, and programmatic computation. Experimental results reveal that even the most advanced LLM powering a well-established agent system achieves merely 38.78% average accuracy. On the hard subset, accuracy drops to only 18.47%, highlighting great potential for improvement. We also present several empirical findings, including that all agents tested exhibit inefficient tool usage, often invoking more tools than necessary to solve a task. We invite the community to adopt PaperArena to develop and evaluate more capable agents for scientific discovery. Our code and data are available https://github.com/Melmaphother/PaperArena.

  • 6 authors
·
Oct 12, 2025

Are LLMs ready to help non-expert users to make charts of official statistics data?

In this time when biased information, deep fakes, and propaganda proliferate, the accessibility of reliable data sources is more important than ever. National statistical institutes provide curated data that contain quantitative information on a wide range of topics. However, that information is typically spread across many tables and the plain numbers may be arduous to process. Hence, this open data may be practically inaccessible. We ask the question "Are current Generative AI models capable of facilitating the identification of the right data and the fully-automatic creation of charts to provide information in visual form, corresponding to user queries?". We present a structured evaluation of recent large language models' (LLMs) capabilities to generate charts from complex data in response to user queries. Working with diverse public data from Statistics Netherlands, we assessed multiple LLMs on their ability to identify relevant data tables, perform necessary manipulations, and generate appropriate visualizations autonomously. We propose a new evaluation framework spanning three dimensions: data retrieval & pre-processing, code quality, and visual representation. Results indicate that locating and processing the correct data represents the most significant challenge. Additionally, LLMs rarely implement visualization best practices without explicit guidance. When supplemented with information about effective chart design, models showed marked improvement in representation scores. Furthermore, an agentic approach with iterative self-evaluation led to excellent performance across all evaluation dimensions. These findings suggest that LLMs' effectiveness for automated chart generation can be enhanced through appropriate scaffolding and feedback mechanisms, and that systems can already reach the necessary accuracy across the three evaluation dimensions.

  • 4 authors
·
Sep 3, 2025

Helpful Agent Meets Deceptive Judge: Understanding Vulnerabilities in Agentic Workflows

Agentic workflows -- where multiple large language model (LLM) instances interact to solve tasks -- are increasingly built on feedback mechanisms, where one model evaluates and critiques another. Despite the promise of feedback-driven improvement, the stability of agentic workflows rests on the reliability of the judge. However, judges may hallucinate information, exhibit bias, or act adversarially -- introducing critical vulnerabilities into the workflow. In this work, we present a systematic analysis of agentic workflows under deceptive or misleading feedback. We introduce a two-dimensional framework for analyzing judge behavior, along axes of intent (from constructive to malicious) and knowledge (from parametric-only to retrieval-augmented systems). Using this taxonomy, we construct a suite of judge behaviors and develop WAFER-QA, a new benchmark with critiques grounded in retrieved web evidence to evaluate robustness of agentic workflows against factually supported adversarial feedback. We reveal that even strongest agents are vulnerable to persuasive yet flawed critiques -- often switching correct answers after a single round of misleading feedback. Taking a step further, we study how model predictions evolve over multiple rounds of interaction, revealing distinct behavioral patterns between reasoning and non-reasoning models. Our findings highlight fundamental vulnerabilities in feedback-based workflows and offer guidance for building more robust agentic systems.

  • 5 authors
·
Jun 3, 2025

AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite

AI agents hold the potential to revolutionize scientific productivity by automating literature reviews, replicating experiments, analyzing data, and even proposing new directions of inquiry; indeed, there are now many such agents, ranging from general-purpose "deep research" systems to specialized science-specific agents, such as AI Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet existing benchmarks fall short on several fronts: they (1) fail to provide holistic, product-informed measures of real-world use cases such as science research; (2) lack reproducible agent tools necessary for a controlled comparison of core agentic capabilities; (3) do not account for confounding variables such as model cost and tool access; (4) do not provide standardized interfaces for quick agent prototyping and evaluation; and (5) lack comprehensive baseline agents necessary to identify true advances. In response, we define principles and tooling for more rigorously benchmarking agents. Using these, we present AstaBench, a suite that provides the first holistic measure of agentic ability to perform scientific research, comprising 2400+ problems spanning the entire scientific discovery process and multiple scientific domains, and including many problems inspired by actual user requests to deployed Asta agents. Our suite comes with the first scientific research environment with production-grade search tools that enable controlled, reproducible evaluation, better accounting for confounders. Alongside, we provide a comprehensive suite of nine science-optimized classes of Asta agents and numerous baselines. Our extensive evaluation of 57 agents across 22 agent classes reveals several interesting findings, most importantly that despite meaningful progress on certain individual aspects, AI remains far from solving the challenge of science research assistance.

  • 39 authors
·
Oct 24, 2025 1

AutoLibra: Agent Metric Induction from Open-Ended Feedback

Agents are predominantly evaluated and optimized via task success metrics, which are coarse, rely on manual design from experts, and fail to reward intermediate emergent behaviors. We propose AutoLibra, a framework for agent evaluation, that transforms open-ended human feedback, e.g., "If you find that the button is disabled, don't click it again", or "This agent has too much autonomy to decide what to do on its own", into metrics for evaluating fine-grained behaviors in agent trajectories. AutoLibra accomplishes this by grounding feedback to an agent's behavior, clustering similar positive and negative behaviors, and creating concrete metrics with clear definitions and concrete examples, which can be used for prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to evaluate the alignment of a set of (induced) metrics with open feedback: "coverage" and "redundancy". Through optimizing these meta-metrics, we experimentally demonstrate AutoLibra's ability to induce more concrete agent evaluation metrics than the ones proposed in previous agent evaluation benchmarks and discover new metrics to analyze agents. We also present two applications of AutoLibra in agent improvement: First, we show that AutoLibra-induced metrics serve as better prompt-engineering targets than the task success rate on a wide range of text game tasks, improving agent performance over baseline by a mean of 20%. Second, we show that AutoLibra can iteratively select high-quality fine-tuning data for web navigation agents. Our results suggest that AutoLibra is a powerful task-agnostic tool for evaluating and improving language agents.

  • 6 authors
·
May 5, 2025 2

AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search

Large language model (LLM) agents have demonstrated strong capabilities across diverse domains. However, designing high-performing agentic systems remains challenging. Existing agent search methods suffer from three major limitations: (1) an emphasis on optimizing agentic workflows while under-utilizing proven human-designed components such as memory, planning, and tool use; (2) high evaluation costs, as each newly generated agent must be fully evaluated on benchmarks; and (3) inefficient search in large search space. In this work, we introduce a comprehensive framework to address these challenges. First, We propose a hierarchical search space that jointly models agentic workflow and composable functional components, enabling richer agentic system designs. Building on this structured design space, we introduce a predictive value model that estimates agent performance given agentic system and task description, allowing for efficient, low-cost evaluation during the search process. Finally, we present a hierarchical Monte Carlo Tree Search (MCTS) strategy informed by uncertainty to guide the search. Experiments on seven benchmarks, covering embodied, math, web, tool, and game, show that our method achieves an average performance gain of 8.34\% over state-of-the-art baselines and exhibits faster search progress with steeper improvement trajectories. Code repo is available at https://github.com/Ericccc02/AgentSwift.

  • 8 authors
·
Jun 6, 2025

AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications

Driven by rapid advancements of Large Language Models (LLMs), agents are empowered to combine intrinsic knowledge with dynamic tool use, greatly enhancing their capacity to address real-world tasks. In line with such an evolution, AgentScope introduces major improvements in a new version (1.0), towards comprehensively supporting flexible and efficient tool-based agent-environment interactions for building agentic applications. Specifically, we abstract foundational components essential for agentic applications and provide unified interfaces and extensible modules, enabling developers to easily leverage the latest progress, such as new models and MCPs. Furthermore, we ground agent behaviors in the ReAct paradigm and offer advanced agent-level infrastructure based on a systematic asynchronous design, which enriches both human-agent and agent-agent interaction patterns while improving execution efficiency. Building on this foundation, we integrate several built-in agents tailored to specific practical scenarios. AgentScope also includes robust engineering support for developer-friendly experiences. We provide a scalable evaluation module with a visual studio interface, making the development of long-trajectory agentic applications more manageable and easier to trace. In addition, AgentScope offers a runtime sandbox to ensure safe agent execution and facilitates rapid deployment in production environments. With these enhancements, AgentScope provides a practical foundation for building scalable, adaptive, and effective agentic applications.

  • 23 authors
·
Aug 22, 2025 4

REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites

We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.

  • 18 authors
·
Apr 15, 2025

Dynamic Evaluation of Large Language Models by Meta Probing Agents

Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs' abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA is the key component of DyVal 2, which naturally extends the previous DyVal~zhu2023dyval. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Matthew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.

  • 5 authors
·
Feb 21, 2024

WebCanvas: Benchmarking Web Agents in Online Environments

For web agents to be practically useful, they must adapt to the continuously evolving web environment characterized by frequent updates to user interfaces and content. However, most existing benchmarks only capture the static aspects of the web. To bridge this gap, we introduce WebCanvas, an innovative online evaluation framework for web agents that effectively addresses the dynamic nature of web interactions. WebCanvas contains three main components to facilitate realistic assessments: (1) A novel evaluation metric which reliably capture critical intermediate actions or states necessary for task completions while disregarding noise caused by insignificant events or changed web-elements. (2) A benchmark dataset called Mind2Web-Live, a refined version of original Mind2Web static dataset containing 542 tasks with 2439 intermediate evaluation states; (3) Lightweight and generalizable annotation tools and testing pipelines that enables the community to collect and maintain the high-quality, up-to-date dataset. Building on WebCanvas, we open-source an agent framework with extensible modules for reasoning, providing a foundation for the community to conduct online inference and evaluations. Our best-performing agent achieves a task success rate of 23.1% and a task completion rate of 48.8% on the Mind2Web-Live test set. Additionally, we analyze the performance discrepancies across various websites, domains, and experimental environments. We encourage the community to contribute further insights on online agent evaluation, thereby advancing this field of research.

  • 11 authors
·
Jun 18, 2024

Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge

Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.

  • 26 authors
·
Jun 26, 2025 1

Evaluating the Social Impact of Generative AI Systems in Systems and Society

Generative AI systems across modalities, ranging from text (including code), image, audio, and video, have broad social impacts, but there is no official standard for means of evaluating those impacts or for which impacts should be evaluated. In this paper, we present a guide that moves toward a standard approach in evaluating a base generative AI system for any modality in two overarching categories: what can be evaluated in a base system independent of context and what can be evaluated in a societal context. Importantly, this refers to base systems that have no predetermined application or deployment context, including a model itself, as well as system components, such as training data. Our framework for a base system defines seven categories of social impact: bias, stereotypes, and representational harms; cultural values and sensitive content; disparate performance; privacy and data protection; financial costs; environmental costs; and data and content moderation labor costs. Suggested methods for evaluation apply to listed generative modalities and analyses of the limitations of existing evaluations serve as a starting point for necessary investment in future evaluations. We offer five overarching categories for what can be evaluated in a broader societal context, each with its own subcategories: trustworthiness and autonomy; inequality, marginalization, and violence; concentration of authority; labor and creativity; and ecosystem and environment. Each subcategory includes recommendations for mitigating harm.

  • 18 authors
·
Jun 9, 2023

Proposer-Agent-Evaluator(PAE): Autonomous Skill Discovery For Foundation Model Internet Agents

The vision of a broadly capable and goal-directed agent, such as an Internet-browsing agent in the digital world and a household humanoid in the physical world, has rapidly advanced, thanks to the generalization capability of foundation models. Such a generalist agent needs to have a large and diverse skill repertoire, such as finding directions between two travel locations and buying specific items from the Internet. If each skill needs to be specified manually through a fixed set of human-annotated instructions, the agent's skill repertoire will necessarily be limited due to the quantity and diversity of human-annotated instructions. In this work, we address this challenge by proposing Proposer-Agent-Evaluator, an effective learning system that enables foundation model agents to autonomously discover and practice skills in the wild. At the heart of PAE is a context-aware task proposer that autonomously proposes tasks for the agent to practice with context information of the environment such as user demos or even just the name of the website itself for Internet-browsing agents. Then, the agent policy attempts those tasks with thoughts and actual grounded operations in the real world with resulting trajectories evaluated by an autonomous VLM-based success evaluator. The success evaluation serves as the reward signal for the agent to refine its policies through RL. We validate PAE on challenging vision-based web navigation, using both real-world and self-hosted websites from WebVoyager and WebArena.To the best of our knowledge, this work represents the first effective learning system to apply autonomous task proposal with RL for agents that generalizes real-world human-annotated benchmarks with SOTA performances. Our open-source checkpoints and code can be found in https://yanqval.github.io/PAE/

  • 8 authors
·
Dec 17, 2024 2

MAPS: A Multilingual Benchmark for Global Agent Performance and Security

Agentic AI systems, which build on Large Language Models (LLMs) and interact with tools and memory, have rapidly advanced in capability and scope. Yet, since LLMs have been shown to struggle in multilingual settings, typically resulting in lower performance and reduced safety, agentic systems risk inheriting these limitations. This raises concerns about the global accessibility of such systems, as users interacting in languages other than English may encounter unreliable or security-critical agent behavior. Despite growing interest in evaluating agentic AI, existing benchmarks focus exclusively on English, leaving multilingual settings unexplored. To address this gap, we propose MAPS, a multilingual benchmark suite designed to evaluate agentic AI systems across diverse languages and tasks. MAPS builds on four widely used agentic benchmarks - GAIA (real-world tasks), SWE-bench (code generation), MATH (mathematical reasoning), and the Agent Security Benchmark (security). We translate each dataset into ten diverse languages, resulting in 805 unique tasks and 8,855 total language-specific instances. Our benchmark suite enables a systematic analysis of how multilingual contexts affect agent performance and robustness. Empirically, we observe consistent degradation in both performance and security when transitioning from English to other languages, with severity varying by task and correlating with the amount of translated input. Building on these findings, we provide actionable recommendations to guide agentic AI systems development and assessment under multilingual settings. This work establishes a standardized evaluation framework, encouraging future research towards equitable, reliable, and globally accessible agentic AI. MAPS benchmark suite is publicly available at https://huggingface.co/datasets/Fujitsu-FRE/MAPS

  • 10 authors
·
May 21, 2025

The Collaboration Gap

The trajectory of AI development suggests that we will increasingly rely on agent-based systems composed of independently developed agents with different information, privileges, and tools. The success of these systems will critically depend on effective collaboration among these heterogeneous agents, even under partial observability. Despite intense interest, few empirical studies have evaluated such agent-agent collaboration at scale. We propose a collaborative maze-solving benchmark that (i) isolates collaborative capabilities, (ii) modulates problem complexity, (iii) enables scalable automated grading, and (iv) imposes no output-format constraints, preserving ecological plausibility. Using this framework, we evaluate 32 leading open- and closed-source models in solo, homogeneous, and heterogeneous pairings. Our results reveal a "collaboration gap": models that perform well solo often degrade substantially when required to collaborate. Collaboration can break down dramatically; for instance, small distilled models that solve mazes well alone may fail almost completely in certain pairings. We find that starting with the stronger agent often improves outcomes, motivating a "relay inference" approach where the stronger agent leads before handing off to the weaker one, closing much of the gap. Our findings argue for (1) collaboration-aware evaluation, (2) training strategies developed to enhance collaborative capabilities, and (3) interaction design that reliably elicits agents' latent skills, guidance that applies to AI-AI and human-AI collaboration.

MicrosoftResearch Microsoft Research
·
Nov 4, 2025 2

Video-BrowseComp: Benchmarking Agentic Video Research on Open Web

The evolution of autonomous agents is redefining information seeking, transitioning from passive retrieval to proactive, open-ended web research. However, while textual and static multimodal agents have seen rapid progress, a significant modality gap remains in processing the web's most dynamic modality: video. Existing video benchmarks predominantly focus on passive perception, feeding curated clips to models without requiring external retrieval. They fail to evaluate agentic video research, which necessitates actively interrogating video timelines, cross-referencing dispersed evidence, and verifying claims against the open web. To bridge this gap, we present Video-BrowseComp, a challenging benchmark comprising 210 questions tailored for open-web agentic video reasoning. Unlike prior benchmarks, Video-BrowseComp enforces a mandatory dependency on temporal visual evidence, ensuring that answers cannot be derived solely through text search but require navigating video timelines to verify external claims. Our evaluation of state-of-the-art models reveals a critical bottleneck: even advanced search-augmented models like GPT-5.1 (w/ Search) achieve only 15.24\% accuracy. Our analysis reveals that these models largely rely on textual proxies, excelling in metadata-rich domains (e.g., TV shows with plot summaries) but collapsing in metadata-sparse, dynamic environments (e.g., sports, gameplay) where visual grounding is essential. As the first open-web video research benchmark, Video-BrowseComp advances the field beyond passive perception toward proactive video reasoning.

  • 9 authors
·
Dec 28, 2025 3

HumanAgencyBench: Scalable Evaluation of Human Agency Support in AI Assistants

As humans delegate more tasks and decisions to artificial intelligence (AI), we risk losing control of our individual and collective futures. Relatively simple algorithmic systems already steer human decision-making, such as social media feed algorithms that lead people to unintentionally and absent-mindedly scroll through engagement-optimized content. In this paper, we develop the idea of human agency by integrating philosophical and scientific theories of agency with AI-assisted evaluation methods: using large language models (LLMs) to simulate and validate user queries and to evaluate AI responses. We develop HumanAgencyBench (HAB), a scalable and adaptive benchmark with six dimensions of human agency based on typical AI use cases. HAB measures the tendency of an AI assistant or agent to Ask Clarifying Questions, Avoid Value Manipulation, Correct Misinformation, Defer Important Decisions, Encourage Learning, and Maintain Social Boundaries. We find low-to-moderate agency support in contemporary LLM-based assistants and substantial variation across system developers and dimensions. For example, while Anthropic LLMs most support human agency overall, they are the least supportive LLMs in terms of Avoid Value Manipulation. Agency support does not appear to consistently result from increasing LLM capabilities or instruction-following behavior (e.g., RLHF), and we encourage a shift towards more robust safety and alignment targets.

  • 4 authors
·
Sep 10, 2025 2

Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks

Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one

  • 20 authors
·
Nov 7, 2024

Can LLMs Beat Humans in Debating? A Dynamic Multi-agent Framework for Competitive Debate

Competitive debate is a complex task of computational argumentation. Large Language Models (LLMs) suffer from hallucinations and lack competitiveness in this field. To address these challenges, we introduce Agent for Debate (Agent4Debate), a dynamic multi-agent framework based on LLMs designed to enhance their capabilities in competitive debate. Drawing inspiration from human behavior in debate preparation and execution, Agent4Debate employs a collaborative architecture where four specialized agents, involving Searcher, Analyzer, Writer, and Reviewer, dynamically interact and cooperate. These agents work throughout the debate process, covering multiple stages from initial research and argument formulation to rebuttal and summary. To comprehensively evaluate framework performance, we construct the Competitive Debate Arena, comprising 66 carefully selected Chinese debate motions. We recruit ten experienced human debaters and collect records of 200 debates involving Agent4Debate, baseline models, and humans. The evaluation employs the Debatrix automatic scoring system and professional human reviewers based on the established Debatrix-Elo and Human-Elo ranking. Experimental results indicate that the state-of-the-art Agent4Debate exhibits capabilities comparable to those of humans. Furthermore, ablation studies demonstrate the effectiveness of each component in the agent structure.

  • 6 authors
·
Aug 8, 2024

BLADE: Benchmarking Language Model Agents for Data-Driven Science

Data-driven scientific discovery requires the iterative integration of scientific domain knowledge, statistical expertise, and an understanding of data semantics to make nuanced analytical decisions, e.g., about which variables, transformations, and statistical models to consider. LM-based agents equipped with planning, memory, and code execution capabilities have the potential to support data-driven science. However, evaluating agents on such open-ended tasks is challenging due to multiple valid approaches, partially correct steps, and different ways to express the same decisions. To address these challenges, we present BLADE, a benchmark to automatically evaluate agents' multifaceted approaches to open-ended research questions. BLADE consists of 12 datasets and research questions drawn from existing scientific literature, with ground truth collected from independent analyses by expert data scientists and researchers. To automatically evaluate agent responses, we developed corresponding computational methods to match different representations of analyses to this ground truth. Though language models possess considerable world knowledge, our evaluation shows that they are often limited to basic analyses. However, agents capable of interacting with the underlying data demonstrate improved, but still non-optimal, diversity in their analytical decision making. Our work enables the evaluation of agents for data-driven science and provides researchers deeper insights into agents' analysis approaches.

  • 16 authors
·
Aug 18, 2024

AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios

Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications. Growing research efforts aim to develop LLM-based agents to address practical demands, introducing a new challenge: agentic scenarios often involve lengthy instructions with complex constraints, such as extended system prompts and detailed tool specifications. While adherence to such instructions is crucial for agentic applications, whether LLMs can reliably follow them remains underexplored. In this paper, we introduce AgentIF, the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios. AgentIF features three key characteristics: (1) Realistic, constructed from 50 real-world agentic applications. (2) Long, averaging 1,723 words with a maximum of 15,630 words. (3) Complex, averaging 11.9 constraints per instruction, covering diverse constraint types, such as tool specifications and condition constraints. To construct AgentIF, we collect 707 human-annotated instructions across 50 agentic tasks from industrial application agents and open-source agentic systems. For each instruction, we annotate the associated constraints and corresponding evaluation metrics, including code-based evaluation, LLM-based evaluation, and hybrid code-LLM evaluation. We use AgentIF to systematically evaluate existing advanced LLMs. We observe that current models generally perform poorly, especially in handling complex constraint structures and tool specifications. We further conduct error analysis and analytical experiments on instruction length and meta constraints, providing some findings about the failure modes of existing LLMs. We have released the code and data to facilitate future research.

  • 8 authors
·
May 22, 2025 2

MCP-AgentBench: Evaluating Real-World Language Agent Performance with MCP-Mediated Tools

The Model Context Protocol (MCP) is rapidly emerging as a pivotal open standard, designed to enhance agent-tool integration and interoperability, and is positioned to unlock a new era of powerful, interconnected, and genuinely utilitarian agentic AI. However, despite MCP's growing adoption, existing benchmarks often fail to capture real-world agent performance within this new paradigm, leading to a distorted perception of their true operational value and an inability to reliably differentiate proficiencies. To bridge this critical evaluation gap, we introduce MCP-AgentBench -- a comprehensive benchmark specifically engineered to rigorously assess language agent capabilities in MCP-mediated tool interactions. Core contributions of MCP-AgentBench include: the establishment of a robust MCP testbed comprising 33 operational servers with 188 distinct tools; the development of a benchmark featuring 600 systematically designed queries distributed across 6 distinct categories of varying interaction complexity; and the introduction of MCP-Eval, a novel outcome-oriented evaluation methodology prioritizing real-world task success. Through extensive empirical evaluation of leading language agents, we provide foundational insights. MCP-AgentBench aims to equip the research community with a standardized and reliable framework to build, validate, and advance agents capable of fully leveraging MCP's transformative benefits, thereby accelerating progress toward truly capable and interoperable AI systems.

  • 6 authors
·
Sep 10, 2025 3

Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests

LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.

AI Agentic Programming: A Survey of Techniques, Challenges, and Opportunities

AI agentic programming is an emerging paradigm in which large language models (LLMs) autonomously plan, execute, and interact with external tools like compilers, debuggers, and version control systems to iteratively perform complex software development tasks. Unlike conventional code generation tools, agentic systems are capable of decomposing high-level goals, coordinating multi-step processes, and adapting their behavior based on intermediate feedback. These capabilities are transforming the software development practice. As this emerging field evolves rapidly, there is a need to define its scope, consolidate its technical foundations, and identify open research challenges. This survey provides a comprehensive and timely review of AI agentic programming. We introduce a taxonomy of agent behaviors and system architectures, and examine core techniques including planning, memory and context management, tool integration, and execution monitoring. We also analyze existing benchmarks and evaluation methodologies used to assess coding agent performance. Our study identifies several key challenges, including limitations in handling long context, a lack of persistent memory across tasks, and concerns around safety, alignment with user intent, and collaboration with human developers. We discuss emerging opportunities to improve the reliability, adaptability, and transparency of agentic systems. By synthesizing recent advances and outlining future directions, this survey aims to provide a foundation for research and development in building the next generation of intelligent and trustworthy AI coding agents.

  • 4 authors
·
Aug 14, 2025

Dr.Mi-Bench: A Modular-integrated Benchmark for Scientific Deep Research Agent

The explosive growth in academic literature necessitates automated deep research (DR) agents, yet their evaluation remains a significant challenge. First, existing benchmarks often focus narrowly on retrieval while neglecting high-level planning and reasoning. Second, existing benchmarks favor general domains over the scientific domains that are the core application for DR agents. To address these gaps, we introduce Dr.Mi-Bench, a Modular-integrated benchmark for scientific DR agents. Grounded in academic literature, our benchmark uses a human-annotated dataset of 200 instances across 10 scientific domains, including both research and review papers. Besides, we also propose a Modular-integrated Evaluation Paradigm for DR Agents (Dr.Mi-Eval), a novel modular-integrated evaluation paradigm, which leverages the rich structure of academic papers to assess the core competencies of planning, retrieval, and reasoning through two complementary modes: an end-to-end evaluation for DR agents and an isolated evaluation for foundational LLMs as potential backbones. Experimental results reveal a fragmented performance landscape: agents exhibit specialized strengths but share critical weaknesses, most notably in performing the multi-source retrieval required for review-style tasks and performing consistently across diverse scientific fields. Moreover, improving high-level planning capability is the crucial factor for unlocking the reasoning potential of foundational LLMs as backbones. By exposing these actionable failure modes, Dr.Mi-Bench provides a diagnostic tool to guide the development of more reliable academic research assistants.

  • 10 authors
·
Nov 30, 2025

SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement

Software engineers operating in complex and dynamic environments must continuously adapt to evolving requirements, learn iteratively from experience, and reconsider their approaches based on new insights. However, current large language model (LLM)-based software agents often rely on rigid processes and tend to repeat ineffective actions without the capacity to evaluate their performance or adapt their strategies over time. To address these challenges, we propose SWE-Search, a multi-agent framework that integrates Monte Carlo Tree Search (MCTS) with a self-improvement mechanism to enhance software agents' performance on repository-level software tasks. SWE-Search extends traditional MCTS by incorporating a hybrid value function that leverages LLMs for both numerical value estimation and qualitative evaluation. This enables self-feedback loops where agents iteratively refine their strategies based on both quantitative numerical evaluations and qualitative natural language assessments of pursued trajectories. The framework includes a SWE-Agent for adaptive exploration, a Value Agent for iterative feedback, and a Discriminator Agent that facilitates multi-agent debate for collaborative decision-making. Applied to the SWE-bench benchmark, our approach demonstrates a 23% relative improvement in performance across five models compared to standard open-source agents without MCTS. Our analysis reveals how performance scales with increased search depth and identifies key factors that facilitate effective self-evaluation in software agents. This work highlights the potential of self-evaluation driven search techniques to enhance agent reasoning and planning in complex, dynamic software engineering environments.

  • 6 authors
·
Oct 26, 2024

AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models

The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.

  • 4 authors
·
May 28, 2025

ARISE: Agentic Rubric-Guided Iterative Survey Engine for Automated Scholarly Paper Generation

The rapid expansion of scholarly literature presents significant challenges in synthesizing comprehensive, high-quality academic surveys. Recent advancements in agentic systems offer considerable promise for automating tasks that traditionally require human expertise, including literature review, synthesis, and iterative refinement. However, existing automated survey-generation solutions often suffer from inadequate quality control, poor formatting, and limited adaptability to iterative feedback, which are core elements intrinsic to scholarly writing. To address these limitations, we introduce ARISE, an Agentic Rubric-guided Iterative Survey Engine designed for automated generation and continuous refinement of academic survey papers. ARISE employs a modular architecture composed of specialized large language model agents, each mirroring distinct scholarly roles such as topic expansion, citation curation, literature summarization, manuscript drafting, and peer-review-based evaluation. Central to ARISE is a rubric-guided iterative refinement loop in which multiple reviewer agents independently assess manuscript drafts using a structured, behaviorally anchored rubric, systematically enhancing the content through synthesized feedback. Evaluating ARISE against state-of-the-art automated systems and recent human-written surveys, our experimental results demonstrate superior performance, achieving an average rubric-aligned quality score of 92.48. ARISE consistently surpasses baseline methods across metrics of comprehensiveness, accuracy, formatting, and overall scholarly rigor. All code, evaluation rubrics, and generated outputs are provided openly at https://github.com/ziwang11112/ARISE

  • 4 authors
·
Nov 21, 2025

Can LLMs Generate Novel Research Ideas? A Large-Scale Human Study with 100+ NLP Researchers

Recent advancements in large language models (LLMs) have sparked optimism about their potential to accelerate scientific discovery, with a growing number of works proposing research agents that autonomously generate and validate new ideas. Despite this, no evaluations have shown that LLM systems can take the very first step of producing novel, expert-level ideas, let alone perform the entire research process. We address this by establishing an experimental design that evaluates research idea generation while controlling for confounders and performs the first head-to-head comparison between expert NLP researchers and an LLM ideation agent. By recruiting over 100 NLP researchers to write novel ideas and blind reviews of both LLM and human ideas, we obtain the first statistically significant conclusion on current LLM capabilities for research ideation: we find LLM-generated ideas are judged as more novel (p < 0.05) than human expert ideas while being judged slightly weaker on feasibility. Studying our agent baselines closely, we identify open problems in building and evaluating research agents, including failures of LLM self-evaluation and their lack of diversity in generation. Finally, we acknowledge that human judgements of novelty can be difficult, even by experts, and propose an end-to-end study design which recruits researchers to execute these ideas into full projects, enabling us to study whether these novelty and feasibility judgements result in meaningful differences in research outcome.

  • 3 authors
·
Sep 6, 2024 3

Generative Agents: Interactive Simulacra of Human Behavior

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

  • 6 authors
·
Apr 6, 2023 3