new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry

Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration.

  • 11 authors
·
Jan 7

The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective

Retinal imaging has emerged as a powerful, non-invasive modality for detecting and quantifying biomarkers of systemic diseases-ranging from diabetes and hypertension to Alzheimer's disease and cardiovascular disorders but current insights remain dispersed across platforms and specialties. Recent technological advances in optical coherence tomography (OCT/OCTA) and adaptive optics (AO) now deliver ultra-high-resolution scans (down to 5 {\mu}m ) with superior contrast and spatial integration, allowing early identification of microvascular abnormalities and neurodegenerative changes. At the same time, AI-driven and machine learning (ML) algorithms have revolutionized the analysis of large-scale retinal datasets, increasing sensitivity and specificity; for example, deep learning models achieve > 90 \% sensitivity for diabetic retinopathy and AUC = 0.89 for the prediction of cardiovascular risk from fundus photographs. The proliferation of mobile health technologies and telemedicine platforms further extends access, reduces costs, and facilitates community-based screening and longitudinal monitoring. Despite these breakthroughs, translation into routine practice is hindered by heterogeneous imaging protocols, limited external validation of AI models, and integration challenges within clinical workflows. In this review, we systematically synthesize the latest OCT/OCT and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives and quantify their diagnostic performance across disease domains. Finally, we propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways-paving the way for precision prevention, early intervention, and ongoing treatment of life-threatening systemic diseases.

  • 3 authors
·
May 27

MetaFormer: High-fidelity Metalens Imaging via Aberration Correcting Transformers

Metalens is an emerging optical system with an irreplaceable merit in that it can be manufactured in ultra-thin and compact sizes, which shows great promise of various applications such as medical imaging and augmented/virtual reality (AR/VR). Despite its advantage in miniaturization, its practicality is constrained by severe aberrations and distortions, which significantly degrade the image quality. Several previous arts have attempted to address different types of aberrations, yet most of them are mainly designed for the traditional bulky lens and not convincing enough to remedy harsh aberrations of the metalens. While there have existed aberration correction methods specifically for metalens, they still fall short of restoration quality. In this work, we propose MetaFormer, an aberration correction framework for metalens-captured images, harnessing Vision Transformers (ViT) that has shown remarkable restoration performance in diverse image restoration tasks. Specifically, we devise a Multiple Adaptive Filters Guidance (MAFG), where multiple Wiener filters enrich the degraded input images with various noise-detail balances, enhancing output restoration quality. In addition, we introduce a Spatial and Transposed self-Attention Fusion (STAF) module, which aggregates features from spatial self-attention and transposed self-attention modules to further ameliorate aberration correction. We conduct extensive experiments, including correcting aberrated images and videos, and clean 3D reconstruction from the degraded images. The proposed method outperforms the previous arts by a significant margin. We further fabricate a metalens and verify the practicality of MetaFormer by restoring the images captured with the manufactured metalens in the wild. Code and pre-trained models are available at https://benhenryl.github.io/MetaFormer

  • 10 authors
·
Dec 5, 2024

Bilateral Guided Radiance Field Processing

Neural Radiance Fields (NeRF) achieves unprecedented performance in synthesizing novel view synthesis, utilizing multi-view consistency. When capturing multiple inputs, image signal processing (ISP) in modern cameras will independently enhance them, including exposure adjustment, color correction, local tone mapping, etc. While these processings greatly improve image quality, they often break the multi-view consistency assumption, leading to "floaters" in the reconstructed radiance fields. To address this concern without compromising visual aesthetics, we aim to first disentangle the enhancement by ISP at the NeRF training stage and re-apply user-desired enhancements to the reconstructed radiance fields at the finishing stage. Furthermore, to make the re-applied enhancements consistent between novel views, we need to perform imaging signal processing in 3D space (i.e. "3D ISP"). For this goal, we adopt the bilateral grid, a locally-affine model, as a generalized representation of ISP processing. Specifically, we optimize per-view 3D bilateral grids with radiance fields to approximate the effects of camera pipelines for each input view. To achieve user-adjustable 3D finishing, we propose to learn a low-rank 4D bilateral grid from a given single view edit, lifting photo enhancements to the whole 3D scene. We demonstrate our approach can boost the visual quality of novel view synthesis by effectively removing floaters and performing enhancements from user retouching. The source code and our data are available at: https://bilarfpro.github.io.

  • 4 authors
·
Jun 1, 2024

NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects

Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS.

  • 3 authors
·
Mar 25, 2023

Pansharpening by convolutional neural networks in the full resolution framework

In recent years, there has been a growing interest in deep learning-based pansharpening. Thus far, research has mainly focused on architectures. Nonetheless, model training is an equally important issue. A first problem is the absence of ground truths, unavoidable in pansharpening. This is often addressed by training networks in a reduced resolution domain and using the original data as ground truth, relying on an implicit scale invariance assumption. However, on full resolution images results are often disappointing, suggesting such invariance not to hold. A further problem is the scarcity of training data, which causes a limited generalization ability and a poor performance on off-training test images. In this paper, we propose a full-resolution training framework for deep learning-based pansharpening. The framework is fully general and can be used for any deep learning-based pansharpening model. Training takes place in the high-resolution domain, relying only on the original data, thus avoiding any loss of information. To ensure spectral and spatial fidelity, a suitable two-component loss is defined. The spectral component enforces consistency between the pansharpened output and the low-resolution multispectral input. The spatial component, computed at high-resolution, maximizes the local correlation between each pansharpened band and the panchromatic input. At testing time, the target-adaptive operating modality is adopted, achieving good generalization with a limited computational overhead. Experiments carried out on WorldView-3, WorldView-2, and GeoEye-1 images show that methods trained with the proposed framework guarantee a pretty good performance in terms of both full-resolution numerical indexes and visual quality.

  • 5 authors
·
Nov 16, 2021

PERF: Panoramic Neural Radiance Field from a Single Panorama

Neural Radiance Field (NeRF) has achieved substantial progress in novel view synthesis given multi-view images. Recently, some works have attempted to train a NeRF from a single image with 3D priors. They mainly focus on a limited field of view with a few occlusions, which greatly limits their scalability to real-world 360-degree panoramic scenarios with large-size occlusions. In this paper, we present PERF, a 360-degree novel view synthesis framework that trains a panoramic neural radiance field from a single panorama. Notably, PERF allows 3D roaming in a complex scene without expensive and tedious image collection. To achieve this goal, we propose a novel collaborative RGBD inpainting method and a progressive inpainting-and-erasing method to lift up a 360-degree 2D scene to a 3D scene. Specifically, we first predict a panoramic depth map as initialization given a single panorama and reconstruct visible 3D regions with volume rendering. Then we introduce a collaborative RGBD inpainting approach into a NeRF for completing RGB images and depth maps from random views, which is derived from an RGB Stable Diffusion model and a monocular depth estimator. Finally, we introduce an inpainting-and-erasing strategy to avoid inconsistent geometry between a newly-sampled view and reference views. The two components are integrated into the learning of NeRFs in a unified optimization framework and achieve promising results. Extensive experiments on Replica and a new dataset PERF-in-the-wild demonstrate the superiority of our PERF over state-of-the-art methods. Our PERF can be widely used for real-world applications, such as panorama-to-3D, text-to-3D, and 3D scene stylization applications. Project page and code are available at https://perf-project.github.io/ and https://github.com/perf-project/PeRF.

  • 6 authors
·
Oct 25, 2023

TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning

High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps.

  • 5 authors
·
Apr 20, 2023

Deblurring 3D Gaussian Splatting

Recent studies in Radiance Fields have paved the robust way for novel view synthesis with their photorealistic rendering quality. Nevertheless, they usually employ neural networks and volumetric rendering, which are costly to train and impede their broad use in various real-time applications due to the lengthy rendering time. Lately 3D Gaussians splatting-based approach has been proposed to model the 3D scene, and it achieves remarkable visual quality while rendering the images in real-time. However, it suffers from severe degradation in the rendering quality if the training images are blurry. Blurriness commonly occurs due to the lens defocusing, object motion, and camera shake, and it inevitably intervenes in clean image acquisition. Several previous studies have attempted to render clean and sharp images from blurry input images using neural fields. The majority of those works, however, are designed only for volumetric rendering-based neural radiance fields and are not straightforwardly applicable to rasterization-based 3D Gaussian splatting methods. Thus, we propose a novel real-time deblurring framework, deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP) that manipulates the covariance of each 3D Gaussian to model the scene blurriness. While deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images. A variety of experiments have been conducted on the benchmark, and the results have revealed the effectiveness of our approach for deblurring. Qualitative results are available at https://benhenryl.github.io/Deblurring-3D-Gaussian-Splatting/

  • 5 authors
·
Jan 1, 2024

Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields

Recent breakthroughs in Neural Radiance Fields (NeRFs) have sparked significant demand for their integration into real-world 3D applications. However, the varied functionalities required by different 3D applications often necessitate diverse NeRF models with various pipelines, leading to tedious NeRF training for each target task and cumbersome trial-and-error experiments. Drawing inspiration from the generalization capability and adaptability of emerging foundation models, our work aims to develop one general-purpose NeRF for handling diverse 3D tasks. We achieve this by proposing a framework called Omni-Recon, which is capable of (1) generalizable 3D reconstruction and zero-shot multitask scene understanding, and (2) adaptability to diverse downstream 3D applications such as real-time rendering and scene editing. Our key insight is that an image-based rendering pipeline, with accurate geometry and appearance estimation, can lift 2D image features into their 3D counterparts, thus extending widely explored 2D tasks to the 3D world in a generalizable manner. Specifically, our Omni-Recon features a general-purpose NeRF model using image-based rendering with two decoupled branches: one complex transformer-based branch that progressively fuses geometry and appearance features for accurate geometry estimation, and one lightweight branch for predicting blending weights of source views. This design achieves state-of-the-art (SOTA) generalizable 3D surface reconstruction quality with blending weights reusable across diverse tasks for zero-shot multitask scene understanding. In addition, it can enable real-time rendering after baking the complex geometry branch into meshes, swift adaptation to achieve SOTA generalizable 3D understanding performance, and seamless integration with 2D diffusion models for text-guided 3D editing.

  • 6 authors
·
Mar 17, 2024

BirdNeRF: Fast Neural Reconstruction of Large-Scale Scenes From Aerial Imagery

In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.

  • 4 authors
·
Feb 6, 2024

Dynamic PlenOctree for Adaptive Sampling Refinement in Explicit NeRF

The explicit neural radiance field (NeRF) has gained considerable interest for its efficient training and fast inference capabilities, making it a promising direction such as virtual reality and gaming. In particular, PlenOctree (POT)[1], an explicit hierarchical multi-scale octree representation, has emerged as a structural and influential framework. However, POT's fixed structure for direct optimization is sub-optimal as the scene complexity evolves continuously with updates to cached color and density, necessitating refining the sampling distribution to capture signal complexity accordingly. To address this issue, we propose the dynamic PlenOctree DOT, which adaptively refines the sample distribution to adjust to changing scene complexity. Specifically, DOT proposes a concise yet novel hierarchical feature fusion strategy during the iterative rendering process. Firstly, it identifies the regions of interest through training signals to ensure adaptive and efficient refinement. Next, rather than directly filtering out valueless nodes, DOT introduces the sampling and pruning operations for octrees to aggregate features, enabling rapid parameter learning. Compared with POT, our DOT outperforms it by enhancing visual quality, reducing over 55.15/68.84% parameters, and providing 1.7/1.9 times FPS for NeRF-synthetic and Tanks & Temples, respectively. Project homepage:https://vlislab22.github.io/DOT. [1] Yu, Alex, et al. "Plenoctrees for real-time rendering of neural radiance fields." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

  • 4 authors
·
Jul 28, 2023

One is All: Bridging the Gap Between Neural Radiance Fields Architectures with Progressive Volume Distillation

Neural Radiance Fields (NeRF) methods have proved effective as compact, high-quality and versatile representations for 3D scenes, and enable downstream tasks such as editing, retrieval, navigation, etc. Various neural architectures are vying for the core structure of NeRF, including the plain Multi-Layer Perceptron (MLP), sparse tensors, low-rank tensors, hashtables and their compositions. Each of these representations has its particular set of trade-offs. For example, the hashtable-based representations admit faster training and rendering but their lack of clear geometric meaning hampers downstream tasks like spatial-relation-aware editing. In this paper, we propose Progressive Volume Distillation (PVD), a systematic distillation method that allows any-to-any conversions between different architectures, including MLP, sparse or low-rank tensors, hashtables and their compositions. PVD consequently empowers downstream applications to optimally adapt the neural representations for the task at hand in a post hoc fashion. The conversions are fast, as distillation is progressively performed on different levels of volume representations, from shallower to deeper. We also employ special treatment of density to deal with its specific numerical instability problem. Empirical evidence is presented to validate our method on the NeRF-Synthetic, LLFF and TanksAndTemples datasets. For example, with PVD, an MLP-based NeRF model can be distilled from a hashtable-based Instant-NGP model at a 10X~20X faster speed than being trained the original NeRF from scratch, while achieving a superior level of synthesis quality. Code is available at https://github.com/megvii-research/AAAI2023-PVD.

  • 6 authors
·
Nov 29, 2022

Vision-Only Robot Navigation in a Neural Radiance World

Neural Radiance Fields (NeRFs) have recently emerged as a powerful paradigm for the representation of natural, complex 3D scenes. NeRFs represent continuous volumetric density and RGB values in a neural network, and generate photo-realistic images from unseen camera viewpoints through ray tracing. We propose an algorithm for navigating a robot through a 3D environment represented as a NeRF using only an on-board RGB camera for localization. We assume the NeRF for the scene has been pre-trained offline, and the robot's objective is to navigate through unoccupied space in the NeRF to reach a goal pose. We introduce a trajectory optimization algorithm that avoids collisions with high-density regions in the NeRF based on a discrete time version of differential flatness that is amenable to constraining the robot's full pose and control inputs. We also introduce an optimization based filtering method to estimate 6DoF pose and velocities for the robot in the NeRF given only an onboard RGB camera. We combine the trajectory planner with the pose filter in an online replanning loop to give a vision-based robot navigation pipeline. We present simulation results with a quadrotor robot navigating through a jungle gym environment, the inside of a church, and Stonehenge using only an RGB camera. We also demonstrate an omnidirectional ground robot navigating through the church, requiring it to reorient to fit through the narrow gap. Videos of this work can be found at https://mikh3x4.github.io/nerf-navigation/ .

  • 7 authors
·
Sep 30, 2021

DyBluRF: Dynamic Deblurring Neural Radiance Fields for Blurry Monocular Video

Video view synthesis, allowing for the creation of visually appealing frames from arbitrary viewpoints and times, offers immersive viewing experiences. Neural radiance fields, particularly NeRF, initially developed for static scenes, have spurred the creation of various methods for video view synthesis. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movement during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel dynamic deblurring NeRF framework for blurry monocular video, called DyBluRF, consisting of an Interleave Ray Refinement (IRR) stage and a Motion Decomposition-based Deblurring (MDD) stage. Our DyBluRF is the first that addresses and handles the novel view synthesis for blurry monocular video. The IRR stage jointly reconstructs dynamic 3D scenes and refines the inaccurate camera pose information to combat imprecise pose information extracted from the given blurry frames. The MDD stage is a novel incremental latent sharp-rays prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. Extensive experimental results demonstrate that our DyBluRF outperforms qualitatively and quantitatively the very recent state-of-the-art methods. Our project page including source codes and pretrained model are publicly available at https://kaist-viclab.github.io/dyblurf-site/.

  • 4 authors
·
Dec 20, 2023 1

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

We present DietNeRF, a 3D neural scene representation estimated from a few images. Neural Radiance Fields (NeRF) learn a continuous volumetric representation of a scene through multi-view consistency, and can be rendered from novel viewpoints by ray casting. While NeRF has an impressive ability to reconstruct geometry and fine details given many images, up to 100 for challenging 360{\deg} scenes, it often finds a degenerate solution to its image reconstruction objective when only a few input views are available. To improve few-shot quality, we propose DietNeRF. We introduce an auxiliary semantic consistency loss that encourages realistic renderings at novel poses. DietNeRF is trained on individual scenes to (1) correctly render given input views from the same pose, and (2) match high-level semantic attributes across different, random poses. Our semantic loss allows us to supervise DietNeRF from arbitrary poses. We extract these semantics using a pre-trained visual encoder such as CLIP, a Vision Transformer trained on hundreds of millions of diverse single-view, 2D photographs mined from the web with natural language supervision. In experiments, DietNeRF improves the perceptual quality of few-shot view synthesis when learned from scratch, can render novel views with as few as one observed image when pre-trained on a multi-view dataset, and produces plausible completions of completely unobserved regions.

  • 3 authors
·
Apr 1, 2021

RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis

Differentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density {\sigma}, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/

  • 3 authors
·
Aug 6, 2024 2

Efficient View Synthesis with Neural Radiance Distribution Field

Recent work on Neural Radiance Fields (NeRF) has demonstrated significant advances in high-quality view synthesis. A major limitation of NeRF is its low rendering efficiency due to the need for multiple network forwardings to render a single pixel. Existing methods to improve NeRF either reduce the number of required samples or optimize the implementation to accelerate the network forwarding. Despite these efforts, the problem of multiple sampling persists due to the intrinsic representation of radiance fields. In contrast, Neural Light Fields (NeLF) reduce the computation cost of NeRF by querying only one single network forwarding per pixel. To achieve a close visual quality to NeRF, existing NeLF methods require significantly larger network capacities which limits their rendering efficiency in practice. In this work, we propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time. Specifically, we use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF. The key is to model the radiance distribution along each ray with frequency basis and predict frequency weights using the network. Pixel values are then computed via volume rendering on radiance distributions. Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods: we achieve a ~254x speed-up over NeRF with similar network size, with only a marginal performance decline. Our project page is at yushuang-wu.github.io/NeRDF.

  • 6 authors
·
Aug 21, 2023

MODEST: Multi-Optics Depth-of-Field Stereo Dataset

Reliable depth estimation under real optical conditions remains a core challenge for camera vision in systems such as autonomous robotics and augmented reality. Despite recent progress in depth estimation and depth-of-field rendering, research remains constrained by the lack of large-scale, high-fidelity, real stereo DSLR datasets, limiting real-world generalization and evaluation of models trained on synthetic data as shown extensively in literature. We present the first high-resolution (5472times3648px) stereo DSLR dataset with 18000 images, systematically varying focal length and aperture across complex real scenes and capturing the optical realism and complexity of professional camera systems. For 9 scenes with varying scene complexity, lighting and background, images are captured with two identical camera assemblies at 10 focal lengths (28-70mm) and 5 apertures (f/2.8-f/22), spanning 50 optical configurations in 2000 images per scene. This full-range optics coverage enables controlled analysis of geometric and optical effects for monocular and stereo depth estimation, shallow depth-of-field rendering, deblurring, 3D scene reconstruction and novel view synthesis. Each focal configuration has a dedicated calibration image set, supporting evaluation of classical and learning based methods for intrinsic and extrinsic calibration. The dataset features challenging visual elements such as multi-scale optical illusions, reflective surfaces, mirrors, transparent glass walls, fine-grained details, and natural / artificial ambient light variations. This work attempts to bridge the realism gap between synthetic training data and real camera optics, and demonstrates challenges with the current state-of-the-art monocular, stereo depth and depth-of-field methods. We release the dataset, calibration files, and evaluation code to support reproducible research on real-world optical generalization.

  • 5 authors
·
Nov 25

CLNeRF: Continual Learning Meets NeRF

Novel view synthesis aims to render unseen views given a set of calibrated images. In practical applications, the coverage, appearance or geometry of the scene may change over time, with new images continuously being captured. Efficiently incorporating such continuous change is an open challenge. Standard NeRF benchmarks only involve scene coverage expansion. To study other practical scene changes, we propose a new dataset, World Across Time (WAT), consisting of scenes that change in appearance and geometry over time. We also propose a simple yet effective method, CLNeRF, which introduces continual learning (CL) to Neural Radiance Fields (NeRFs). CLNeRF combines generative replay and the Instant Neural Graphics Primitives (NGP) architecture to effectively prevent catastrophic forgetting and efficiently update the model when new data arrives. We also add trainable appearance and geometry embeddings to NGP, allowing a single compact model to handle complex scene changes. Without the need to store historical images, CLNeRF trained sequentially over multiple scans of a changing scene performs on-par with the upper bound model trained on all scans at once. Compared to other CL baselines CLNeRF performs much better across standard benchmarks and WAT. The source code, and the WAT dataset are available at https://github.com/IntelLabs/CLNeRF. Video presentation is available at: https://youtu.be/nLRt6OoDGq0?si=8yD6k-8MMBJInQPs

  • 2 authors
·
Aug 28, 2023

WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields

Neural Radiance Field (NeRF) has shown impressive performance in novel view synthesis via implicit scene representation. However, it usually suffers from poor scalability as requiring densely sampled images for each new scene. Several studies have attempted to mitigate this problem by integrating Multi-View Stereo (MVS) technique into NeRF while they still entail a cumbersome fine-tuning process for new scenes. Notably, the rendering quality will drop severely without this fine-tuning process and the errors mainly appear around the high-frequency features. In the light of this observation, we design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF to achieve generalizable yet high-quality synthesis without any per-scene optimization. To preserve high-frequency information when generating 3D feature volumes, WaveNeRF builds Multi-View Stereo in the Wavelet domain by integrating the discrete wavelet transform into the classical cascade MVS, which disentangles high-frequency information explicitly. With that, disentangled frequency features can be injected into classic NeRF via a novel hybrid neural renderer to yield faithful high-frequency details, and an intuitive frequency-guided sampling strategy can be designed to suppress artifacts around high-frequency regions. Extensive experiments over three widely studied benchmarks show that WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.

  • 8 authors
·
Aug 9, 2023

S3IM: Stochastic Structural SIMilarity and Its Unreasonable Effectiveness for Neural Fields

Recently, Neural Radiance Field (NeRF) has shown great success in rendering novel-view images of a given scene by learning an implicit representation with only posed RGB images. NeRF and relevant neural field methods (e.g., neural surface representation) typically optimize a point-wise loss and make point-wise predictions, where one data point corresponds to one pixel. Unfortunately, this line of research failed to use the collective supervision of distant pixels, although it is known that pixels in an image or scene can provide rich structural information. To the best of our knowledge, we are the first to design a nonlocal multiplex training paradigm for NeRF and relevant neural field methods via a novel Stochastic Structural SIMilarity (S3IM) loss that processes multiple data points as a whole set instead of process multiple inputs independently. Our extensive experiments demonstrate the unreasonable effectiveness of S3IM in improving NeRF and neural surface representation for nearly free. The improvements of quality metrics can be particularly significant for those relatively difficult tasks: e.g., the test MSE loss unexpectedly drops by more than 90% for TensoRF and DVGO over eight novel view synthesis tasks; a 198% F-score gain and a 64% Chamfer L_{1} distance reduction for NeuS over eight surface reconstruction tasks. Moreover, S3IM is consistently robust even with sparse inputs, corrupted images, and dynamic scenes.

  • 8 authors
·
Aug 14, 2023

Progressive Volume Distillation with Active Learning for Efficient NeRF Architecture Conversion

Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including the plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their combinations, entail distinct trade-offs. For instance, representations based on Hashtables enable faster rendering but lack clear geometric meaning, thereby posing challenges for spatial-relation-aware editing. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversion between diverse architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a three-level active learning technique provides continuous feedback from teacher to student during the distillation process, achieving high-performance outcomes. Experimental evidence showcases the effectiveness of our method across multiple benchmark datasets. For instance, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the MLP-based model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements like mobile devices. Project website: https://sk-fun.fun/PVD-AL.

  • 7 authors
·
Apr 8, 2023

Controllable Dynamic Appearance for Neural 3D Portraits

Recent advances in Neural Radiance Fields (NeRFs) have made it possible to reconstruct and reanimate dynamic portrait scenes with control over head-pose, facial expressions and viewing direction. However, training such models assumes photometric consistency over the deformed region e.g. the face must be evenly lit as it deforms with changing head-pose and facial expression. Such photometric consistency across frames of a video is hard to maintain, even in studio environments, thus making the created reanimatable neural portraits prone to artifacts during reanimation. In this work, we propose CoDyNeRF, a system that enables the creation of fully controllable 3D portraits in real-world capture conditions. CoDyNeRF learns to approximate illumination dependent effects via a dynamic appearance model in the canonical space that is conditioned on predicted surface normals and the facial expressions and head-pose deformations. The surface normals prediction is guided using 3DMM normals that act as a coarse prior for the normals of the human head, where direct prediction of normals is hard due to rigid and non-rigid deformations induced by head-pose and facial expression changes. Using only a smartphone-captured short video of a subject for training, we demonstrate the effectiveness of our method on free view synthesis of a portrait scene with explicit head pose and expression controls, and realistic lighting effects. The project page can be found here: http://shahrukhathar.github.io/2023/08/22/CoDyNeRF.html

  • 7 authors
·
Sep 19, 2023 1

Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control

Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.

  • 5 authors
·
May 22

BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting

While neural rendering has demonstrated impressive capabilities in 3D scene reconstruction and novel view synthesis, it heavily relies on high-quality sharp images and accurate camera poses. Numerous approaches have been proposed to train Neural Radiance Fields (NeRF) with motion-blurred images, commonly encountered in real-world scenarios such as low-light or long-exposure conditions. However, the implicit representation of NeRF struggles to accurately recover intricate details from severely motion-blurred images and cannot achieve real-time rendering. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction and real-time rendering by explicitly optimizing point clouds as Gaussian spheres. In this paper, we introduce a novel approach, named BAD-Gaussians (Bundle Adjusted Deblur Gaussian Splatting), which leverages explicit Gaussian representation and handles severe motion-blurred images with inaccurate camera poses to achieve high-quality scene reconstruction. Our method models the physical image formation process of motion-blurred images and jointly learns the parameters of Gaussians while recovering camera motion trajectories during exposure time. In our experiments, we demonstrate that BAD-Gaussians not only achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods on both synthetic and real datasets but also enables real-time rendering capabilities. Our project page and source code is available at https://lingzhezhao.github.io/BAD-Gaussians/

  • 3 authors
·
Mar 18, 2024

TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering

Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\"uckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.

  • 4 authors
·
Jan 11, 2024

Pixel-level modelling of group-scale strong lens CASSOWARY 19

We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.

  • 9 authors
·
Apr 15

Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks

The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.

  • 8 authors
·
Mar 31

Dynamic Novel View Synthesis in High Dynamic Range

High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code will be released.

  • 6 authors
·
Sep 26

SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields

Neural Radiance Fields (NeRFs) have emerged as a popular approach for novel view synthesis. While NeRFs are quickly being adapted for a wider set of applications, intuitively editing NeRF scenes is still an open challenge. One important editing task is the removal of unwanted objects from a 3D scene, such that the replaced region is visually plausible and consistent with its context. We refer to this task as 3D inpainting. In 3D, solutions must be both consistent across multiple views and geometrically valid. In this paper, we propose a novel 3D inpainting method that addresses these challenges. Given a small set of posed images and sparse annotations in a single input image, our framework first rapidly obtains a 3D segmentation mask for a target object. Using the mask, a perceptual optimizationbased approach is then introduced that leverages learned 2D image inpainters, distilling their information into 3D space, while ensuring view consistency. We also address the lack of a diverse benchmark for evaluating 3D scene inpainting methods by introducing a dataset comprised of challenging real-world scenes. In particular, our dataset contains views of the same scene with and without a target object, enabling more principled benchmarking of the 3D inpainting task. We first demonstrate the superiority of our approach on multiview segmentation, comparing to NeRFbased methods and 2D segmentation approaches. We then evaluate on the task of 3D inpainting, establishing state-ofthe-art performance against other NeRF manipulation algorithms, as well as a strong 2D image inpainter baseline. Project Page: https://spinnerf3d.github.io

  • 7 authors
·
Nov 22, 2022

Band-wise Hyperspectral Image Pansharpening using CNN Model Propagation

Hyperspectral pansharpening is receiving a growing interest since the last few years as testified by a large number of research papers and challenges. It consists in a pixel-level fusion between a lower-resolution hyperspectral datacube and a higher-resolution single-band image, the panchromatic image, with the goal of providing a hyperspectral datacube at panchromatic resolution. Thanks to their powerful representational capabilities, deep learning models have succeeded to provide unprecedented results on many general purpose image processing tasks. However, when moving to domain specific problems, as in this case, the advantages with respect to traditional model-based approaches are much lesser clear-cut due to several contextual reasons. Scarcity of training data, lack of ground-truth, data shape variability, are some such factors that limit the generalization capacity of the state-of-the-art deep learning networks for hyperspectral pansharpening. To cope with these limitations, in this work we propose a new deep learning method which inherits a simple single-band unsupervised pansharpening model nested in a sequential band-wise adaptive scheme, where each band is pansharpened refining the model tuned on the preceding one. By doing so, a simple model is propagated along the wavelength dimension, adaptively and flexibly, with no need to have a fixed number of spectral bands, and, with no need to dispose of large, expensive and labeled training datasets. The proposed method achieves very good results on our datasets, outperforming both traditional and deep learning reference methods. The implementation of the proposed method can be found on https://github.com/giu-guarino/R-PNN

  • 4 authors
·
Nov 11, 2023

Real-Time Neural Light Field on Mobile Devices

Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving 15times sim 24times storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., 18.04ms (iPhone 13) for rendering one 1008times756 image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR 26.15 vs. 25.91 on the real-world forward-facing dataset).

  • 9 authors
·
Dec 15, 2022

Beyond Confidence: Adaptive Abstention in Dual-Threshold Conformal Prediction for Autonomous System Perception

Safety-critical perception systems require both reliable uncertainty quantification and principled abstention mechanisms to maintain safety under diverse operational conditions. We present a novel dual-threshold conformalization framework that provides statistically-guaranteed uncertainty estimates while enabling selective prediction in high-risk scenarios. Our approach uniquely combines a conformal threshold ensuring valid prediction sets with an abstention threshold optimized through ROC analysis, providing distribution-free coverage guarantees (\ge 1 - \alpha) while identifying unreliable predictions. Through comprehensive evaluation on CIFAR-100, ImageNet1K, and ModelNet40 datasets, we demonstrate superior robustness across camera and LiDAR modalities under varying environmental perturbations. The framework achieves exceptional detection performance (AUC: 0.993\to0.995) under severe conditions while maintaining high coverage (>90.0\%) and enabling adaptive abstention (13.5\%\to63.4\%\pm0.5) as environmental severity increases. For LiDAR-based perception, our approach demonstrates particularly strong performance, maintaining robust coverage (>84.5\%) while appropriately abstaining from unreliable predictions. Notably, the framework shows remarkable stability under heavy perturbations, with detection performance (AUC: 0.995\pm0.001) significantly outperforming existing methods across all modalities. Our unified approach bridges the gap between theoretical guarantees and practical deployment needs, offering a robust solution for safety-critical autonomous systems operating in challenging real-world conditions.

  • 4 authors
·
Feb 10

MambaNUT: Nighttime UAV Tracking via Mamba-based Adaptive Curriculum Learning

Harnessing low-light enhancement and domain adaptation, nighttime UAV tracking has made substantial strides. However, over-reliance on image enhancement, limited high-quality nighttime data, and a lack of integration between daytime and nighttime trackers hinder the development of an end-to-end trainable framework. Additionally, current ViT-based trackers demand heavy computational resources due to their reliance on the self-attention mechanism. In this paper, we propose a novel pure Mamba-based tracking framework (MambaNUT) that employs a state space model with linear complexity as its backbone, incorporating a single-stream architecture that integrates feature learning and template-search coupling within Vision Mamba. We introduce an adaptive curriculum learning (ACL) approach that dynamically adjusts sampling strategies and loss weights, thereby improving the model's ability of generalization. Our ACL is composed of two levels of curriculum schedulers: (1) sampling scheduler that transforms the data distribution from imbalanced to balanced, as well as from easier (daytime) to harder (nighttime) samples; (2) loss scheduler that dynamically assigns weights based on the size of the training set and IoU of individual instances. Exhaustive experiments on multiple nighttime UAV tracking benchmarks demonstrate that the proposed MambaNUT achieves state-of-the-art performance while requiring lower computational costs. The code will be available at https://github.com/wuyou3474/MambaNUT.

  • 6 authors
·
Nov 30, 2024

Cross-Ray Neural Radiance Fields for Novel-view Synthesis from Unconstrained Image Collections

Neural Radiance Fields (NeRF) is a revolutionary approach for rendering scenes by sampling a single ray per pixel and it has demonstrated impressive capabilities in novel-view synthesis from static scene images. However, in practice, we usually need to recover NeRF from unconstrained image collections, which poses two challenges: 1) the images often have dynamic changes in appearance because of different capturing time and camera settings; 2) the images may contain transient objects such as humans and cars, leading to occlusion and ghosting artifacts. Conventional approaches seek to address these challenges by locally utilizing a single ray to synthesize a color of a pixel. In contrast, humans typically perceive appearance and objects by globally utilizing information across multiple pixels. To mimic the perception process of humans, in this paper, we propose Cross-Ray NeRF (CR-NeRF) that leverages interactive information across multiple rays to synthesize occlusion-free novel views with the same appearances as the images. Specifically, to model varying appearances, we first propose to represent multiple rays with a novel cross-ray feature and then recover the appearance by fusing global statistics, i.e., feature covariance of the rays and the image appearance. Moreover, to avoid occlusion introduced by transient objects, we propose a transient objects handler and introduce a grid sampling strategy for masking out the transient objects. We theoretically find that leveraging correlation across multiple rays promotes capturing more global information. Moreover, extensive experimental results on large real-world datasets verify the effectiveness of CR-NeRF.

  • 5 authors
·
Jul 16, 2023