Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFast and Interpretable Protein Substructure Alignment via Optimal Transport
Proteins are essential biological macromolecules that execute life functions. Local motifs within protein structures, such as active sites, are the most critical components for linking structure to function and are key to understanding protein evolution and enabling protein engineering. Existing computational methods struggle to identify and compare these local structures, which leaves a significant gap in understanding protein structures and harnessing their functions. This study presents PLASMA, the first deep learning framework for efficient and interpretable residue-level protein substructure alignment. We reformulate the problem as a regularized optimal transport task and leverage differentiable Sinkhorn iterations. For a pair of input protein structures, PLASMA outputs a clear alignment matrix with an interpretable overall similarity score. Through extensive quantitative evaluations and three biological case studies, we demonstrate that PLASMA achieves accurate, lightweight, and interpretable residue-level alignment. Additionally, we introduce PLASMA-PF, a training-free variant that provides a practical alternative when training data are unavailable. Our method addresses a critical gap in protein structure analysis tools and offers new opportunities for functional annotation, evolutionary studies, and structure-based drug design. Reproducibility is ensured via our official implementation at https://github.com/ZW471/PLASMA-Protein-Local-Alignment.git.
DeepPermNet: Visual Permutation Learning
We present a principled approach to uncover the structure of visual data by solving a novel deep learning task coined visual permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation matrix. Unfortunately, permutation matrices are discrete, thereby posing difficulties for gradient-based methods. To this end, we resort to a continuous approximation of these matrices using doubly-stochastic matrices which we generate from standard CNN predictions using Sinkhorn iterations. Unrolling these iterations in a Sinkhorn network layer, we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is demonstrated on two challenging computer vision problems, namely, (i) relative attributes learning and (ii) self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for (i) and on the classification and segmentation tasks on the PASCAL VOC dataset for (ii).
Optimal Transport-based Identity Matching for Identity-invariant Facial Expression Recognition
Identity-invariant facial expression recognition (FER) has been one of the challenging computer vision tasks. Since conventional FER schemes do not explicitly address the inter-identity variation of facial expressions, their neural network models still operate depending on facial identity. This paper proposes to quantify the inter-identity variation by utilizing pairs of similar expressions explored through a specific matching process. We formulate the identity matching process as an Optimal Transport (OT) problem. Specifically, to find pairs of similar expressions from different identities, we define the inter-feature similarity as a transportation cost. Then, optimal identity matching to find the optimal flow with minimum transportation cost is performed by Sinkhorn-Knopp iteration. The proposed matching method is not only easy to plug in to other models, but also requires only acceptable computational overhead. Extensive simulations prove that the proposed FER method improves the PCC/CCC performance by up to 10\% or more compared to the runner-up on wild datasets. The source code and software demo are available at https://github.com/kdhht2334/ELIM_FER.
Point2Mask: Point-supervised Panoptic Segmentation via Optimal Transport
Weakly-supervised image segmentation has recently attracted increasing research attentions, aiming to avoid the expensive pixel-wise labeling. In this paper, we present an effective method, namely Point2Mask, to achieve high-quality panoptic prediction using only a single random point annotation per target for training. Specifically, we formulate the panoptic pseudo-mask generation as an Optimal Transport (OT) problem, where each ground-truth (gt) point label and pixel sample are defined as the label supplier and consumer, respectively. The transportation cost is calculated by the introduced task-oriented maps, which focus on the category-wise and instance-wise differences among the various thing and stuff targets. Furthermore, a centroid-based scheme is proposed to set the accurate unit number for each gt point supplier. Hence, the pseudo-mask generation is converted into finding the optimal transport plan at a globally minimal transportation cost, which can be solved via the Sinkhorn-Knopp Iteration. Experimental results on Pascal VOC and COCO demonstrate the promising performance of our proposed Point2Mask approach to point-supervised panoptic segmentation. Source code is available at: https://github.com/LiWentomng/Point2Mask.
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.
Re-basin via implicit Sinkhorn differentiation
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
Toward the Frontiers of Reliable Diffusion Sampling via Adversarial Sinkhorn Attention Guidance
Diffusion models have demonstrated strong generative performance when using guidance methods such as classifier-free guidance (CFG), which enhance output quality by modifying the sampling trajectory. These methods typically improve a target output by intentionally degrading another, often the unconditional output, using heuristic perturbation functions such as identity mixing or blurred conditions. However, these approaches lack a principled foundation and rely on manually designed distortions. In this work, we propose Adversarial Sinkhorn Attention Guidance (ASAG), a novel method that reinterprets attention scores in diffusion models through the lens of optimal transport and intentionally disrupt the transport cost via Sinkhorn algorithm. Instead of naively corrupting the attention mechanism, ASAG injects an adversarial cost within self-attention layers to reduce pixel-wise similarity between queries and keys. This deliberate degradation weakens misleading attention alignments and leads to improved conditional and unconditional sample quality. ASAG shows consistent improvements in text-to-image diffusion, and enhances controllability and fidelity in downstream applications such as IP-Adapter and ControlNet. The method is lightweight, plug-and-play, and improves reliability without requiring any model retraining.
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Optimal transport is an important tool in machine learning, allowing to capture geometric properties of the data through a linear program on transport polytopes. We present a single-loop optimization algorithm for minimizing general convex objectives on these domains, utilizing the principles of Sinkhorn matrix scaling and mirror descent. The proposed algorithm is robust to noise, and can be used in an online setting. We provide theoretical guarantees for convex objectives and experimental results showcasing it effectiveness on both synthetic and real-world data.
Sinkhorn Distance Minimization for Knowledge Distillation
Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions. Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.
Quantum Doubly Stochastic Transformers
At the core of the Transformer, the Softmax normalizes the attention matrix to be right stochastic. Previous research has shown that this often destabilizes training and that enforcing the attention matrix to be doubly stochastic (through Sinkhorn's algorithm) consistently improves performance across different tasks, domains and Transformer flavors. However, Sinkhorn's algorithm is iterative, approximative, non-parametric and thus inflexible w.r.t. the obtained doubly stochastic matrix (DSM). Recently, it has been proven that DSMs can be obtained with a parametric quantum circuit, yielding a novel quantum inductive bias for DSMs with no known classical analogue. Motivated by this, we demonstrate the feasibility of a hybrid classical-quantum doubly stochastic Transformer (QDSFormer) that replaces the Softmax in the self-attention layer with a variational quantum circuit. We study the expressive power of the circuit and find that it yields more diverse DSMs that better preserve information than classical operators. Across multiple small-scale object recognition tasks, we find that our QDSFormer consistently surpasses both a standard Vision Transformer and other doubly stochastic Transformers. Beyond the established Sinkformer, this comparison includes a novel quantum-inspired doubly stochastic Transformer (based on QR decomposition) that can be of independent interest. The QDSFormer also shows improved training stability and lower performance variation suggesting that it may mitigate the notoriously unstable training of ViTs on small-scale data.
Sinkformers: Transformers with Doubly Stochastic Attention
Attention based models such as Transformers involve pairwise interactions between data points, modeled with a learnable attention matrix. Importantly, this attention matrix is normalized with the SoftMax operator, which makes it row-wise stochastic. In this paper, we propose instead to use Sinkhorn's algorithm to make attention matrices doubly stochastic. We call the resulting model a Sinkformer. We show that the row-wise stochastic attention matrices in classical Transformers get close to doubly stochastic matrices as the number of epochs increases, justifying the use of Sinkhorn normalization as an informative prior. On the theoretical side, we show that, unlike the SoftMax operation, this normalization makes it possible to understand the iterations of self-attention modules as a discretized gradient-flow for the Wasserstein metric. We also show in the infinite number of samples limit that, when rescaling both attention matrices and depth, Sinkformers operate a heat diffusion. On the experimental side, we show that Sinkformers enhance model accuracy in vision and natural language processing tasks. In particular, on 3D shapes classification, Sinkformers lead to a significant improvement.
Preventing Local Pitfalls in Vector Quantization via Optimal Transport
Vector-quantized networks (VQNs) have exhibited remarkable performance across various tasks, yet they are prone to training instability, which complicates the training process due to the necessity for techniques such as subtle initialization and model distillation. In this study, we identify the local minima issue as the primary cause of this instability. To address this, we integrate an optimal transport method in place of the nearest neighbor search to achieve a more globally informed assignment. We introduce OptVQ, a novel vector quantization method that employs the Sinkhorn algorithm to optimize the optimal transport problem, thereby enhancing the stability and efficiency of the training process. To mitigate the influence of diverse data distributions on the Sinkhorn algorithm, we implement a straightforward yet effective normalization strategy. Our comprehensive experiments on image reconstruction tasks demonstrate that OptVQ achieves 100% codebook utilization and surpasses current state-of-the-art VQNs in reconstruction quality.
The Monge Gap: A Regularizer to Learn All Transport Maps
Optimal transport (OT) theory has been been used in machine learning to study and characterize maps that can push-forward efficiently a probability measure onto another. Recent works have drawn inspiration from Brenier's theorem, which states that when the ground cost is the squared-Euclidean distance, the ``best'' map to morph a continuous measure in P(Rd) into another must be the gradient of a convex function. To exploit that result, [Makkuva+ 2020, Korotin+2020] consider maps T=nabla f_theta, where f_theta is an input convex neural network (ICNN), as defined by Amos+2017, and fit theta with SGD using samples. Despite their mathematical elegance, fitting OT maps with ICNNs raises many challenges, due notably to the many constraints imposed on theta; the need to approximate the conjugate of f_theta; or the limitation that they only work for the squared-Euclidean cost. More generally, we question the relevance of using Brenier's result, which only applies to densities, to constrain the architecture of candidate maps fitted on samples. Motivated by these limitations, we propose a radically different approach to estimating OT maps: Given a cost c and a reference measure rho, we introduce a regularizer, the Monge gap M^c_{rho}(T) of a map T. That gap quantifies how far a map T deviates from the ideal properties we expect from a c-OT map. In practice, we drop all architecture requirements for T and simply minimize a distance (e.g., the Sinkhorn divergence) between Tsharpmu and nu, regularized by M^c_rho(T). We study M^c_{rho}, and show how our simple pipeline outperforms significantly other baselines in practice.
When, Why and How Much? Adaptive Learning Rate Scheduling by Refinement
Learning rate schedules used in practice bear little resemblance to those recommended by theory. We close much of this theory/practice gap, and as a consequence are able to derive new problem-adaptive learning rate schedules. Our key technical contribution is a refined analysis of learning rate schedules for a wide class of optimization algorithms (including SGD). In contrast to most prior works that study the convergence of the average iterate, we study the last iterate, which is what most people use in practice. When considering only worst-case analysis, our theory predicts that the best choice is the linear decay schedule: a popular choice in practice that sets the stepsize proportionally to 1 - t/T, where t is the current iteration and T is the total number of steps. To go beyond this worst-case analysis, we use the observed gradient norms to derive schedules refined for any particular task. These refined schedules exhibit learning rate warm-up and rapid learning rate annealing near the end of training. Ours is the first systematic approach to automatically yield both of these properties. We perform the most comprehensive evaluation of learning rate schedules to date, evaluating across 10 diverse deep learning problems, a series of LLMs, and a suite of logistic regression problems. We validate that overall, the linear-decay schedule matches or outperforms all commonly used default schedules including cosine annealing, and that our schedule refinement method gives further improvements.
On Excess Mass Behavior in Gaussian Mixture Models with Orlicz-Wasserstein Distances
Dirichlet Process mixture models (DPMM) in combination with Gaussian kernels have been an important modeling tool for numerous data domains arising from biological, physical, and social sciences. However, this versatility in applications does not extend to strong theoretical guarantees for the underlying parameter estimates, for which only a logarithmic rate is achieved. In this work, we (re)introduce and investigate a metric, named Orlicz-Wasserstein distance, in the study of the Bayesian contraction behavior for the parameters. We show that despite the overall slow convergence guarantees for all the parameters, posterior contraction for parameters happens at almost polynomial rates in outlier regions of the parameter space. Our theoretical results provide new insight in understanding the convergence behavior of parameters arising from various settings of hierarchical Bayesian nonparametric models. In addition, we provide an algorithm to compute the metric by leveraging Sinkhorn divergences and validate our findings through a simulation study.
Self-labelling via simultaneous clustering and representation learning
Combining clustering and representation learning is one of the most promising approaches for unsupervised learning of deep neural networks. However, doing so naively leads to ill posed learning problems with degenerate solutions. In this paper, we propose a novel and principled learning formulation that addresses these issues. The method is obtained by maximizing the information between labels and input data indices. We show that this criterion extends standard crossentropy minimization to an optimal transport problem, which we solve efficiently for millions of input images and thousands of labels using a fast variant of the Sinkhorn-Knopp algorithm. The resulting method is able to self-label visual data so as to train highly competitive image representations without manual labels. Our method achieves state of the art representation learning performance for AlexNet and ResNet-50 on SVHN, CIFAR-10, CIFAR-100 and ImageNet and yields the first self-supervised AlexNet that outperforms the supervised Pascal VOC detection baseline. Code and models are available.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
The Road Less Scheduled
Existing learning rate schedules that do not require specification of the optimization stopping step T are greatly out-performed by learning rate schedules that depend on T. We propose an approach that avoids the need for this stopping time by eschewing the use of schedules entirely, while exhibiting state-of-the-art performance compared to schedules across a wide family of problems ranging from convex problems to large-scale deep learning problems. Our Schedule-Free approach introduces no additional hyper-parameters over standard optimizers with momentum. Our method is a direct consequence of a new theory we develop that unifies scheduling and iterate averaging. An open source implementation of our method is available (https://github.com/facebookresearch/schedule_free).
