new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Sigma: Differential Rescaling of Query, Key and Value for Efficient Language Models

We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.

  • 34 authors
·
Jan 23 2

Zoology: Measuring and Improving Recall in Efficient Language Models

Attention-free language models that combine gating and convolutions are growing in popularity due to their efficiency and increasingly competitive performance. To better understand these architectures, we pretrain a suite of 17 attention and "gated-convolution" language models, finding that SoTA gated-convolution architectures still underperform attention by up to 2.1 perplexity points on the Pile. In fine-grained analysis, we find 82% of the gap is explained by each model's ability to recall information that is previously mentioned in-context, e.g. "Hakuna Matata means no worries Hakuna Matata it means no" rightarrow "??". On this task, termed "associative recall", we find that attention outperforms gated-convolutions by a large margin: a 70M parameter attention model outperforms a 1.4 billion parameter gated-convolution model on associative recall. This is surprising because prior work shows gated convolutions can perfectly solve synthetic tests for AR capability. To close the gap between synthetics and real language, we develop a new formalization of the task called multi-query associative recall (MQAR) that better reflects actual language. We perform an empirical and theoretical study of MQAR that elucidates differences in the parameter-efficiency of attention and gated-convolution recall. Informed by our analysis, we evaluate simple convolution-attention hybrids and show that hybrids with input-dependent sparse attention patterns can close 97.4% of the gap to attention, while maintaining sub-quadratic scaling. Our code is accessible at: https://github.com/HazyResearch/zoology.

  • 8 authors
·
Dec 8, 2023

Yi: Open Foundation Models by 01.AI

We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.

  • 31 authors
·
Mar 7, 2024 3

Generating Images with Multimodal Language Models

We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.

  • 3 authors
·
May 26, 2023 2

SeqDialN: Sequential Visual Dialog Networks in Joint Visual-Linguistic Representation Space

In this work, we formulate a visual dialog as an information flow in which each piece of information is encoded with the joint visual-linguistic representation of a single dialog round. Based on this formulation, we consider the visual dialog task as a sequence problem consisting of ordered visual-linguistic vectors. For featurization, we use a Dense Symmetric Co-Attention network as a lightweight vison-language joint representation generator to fuse multimodal features (i.e., image and text), yielding better computation and data efficiencies. For inference, we propose two Sequential Dialog Networks (SeqDialN): the first uses LSTM for information propagation (IP) and the second uses a modified Transformer for multi-step reasoning (MR). Our architecture separates the complexity of multimodal feature fusion from that of inference, which allows simpler design of the inference engine. IP based SeqDialN is our baseline with a simple 2-layer LSTM design that achieves decent performance. MR based SeqDialN, on the other hand, recurrently refines the semantic question/history representations through the self-attention stack of Transformer and produces promising results on the visual dialog task. On VisDial v1.0 test-std dataset, our best single generative SeqDialN achieves 62.54% NDCG and 48.63% MRR; our ensemble generative SeqDialN achieves 63.78% NDCG and 49.98% MRR, which set a new state-of-the-art generative visual dialog model. We fine-tune discriminative SeqDialN with dense annotations and boost the performance up to 72.41% NDCG and 55.11% MRR. In this work, we discuss the extensive experiments we have conducted to demonstrate the effectiveness of our model components. We also provide visualization for the reasoning process from the relevant conversation rounds and discuss our fine-tuning methods. Our code is available at https://github.com/xiaoxiaoheimei/SeqDialN

  • 1 authors
·
Aug 2, 2020

Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey

The rapid advancement of large language models (LLMs) has intensified the need for effective mechanisms to transform continuous multimodal data into discrete representations suitable for language-based processing. Discrete tokenization, with vector quantization (VQ) as a central approach, offers both computational efficiency and compatibility with LLM architectures. Despite its growing importance, there is a lack of a comprehensive survey that systematically examines VQ techniques in the context of LLM-based systems. This work fills this gap by presenting the first structured taxonomy and analysis of discrete tokenization methods designed for LLMs. We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines. Beyond algorithm-level investigation, we discuss existing research in terms of classical applications without LLMs, LLM-based single-modality systems, and LLM-based multimodal systems, highlighting how quantization strategies influence alignment, reasoning, and generation performance. In addition, we identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints. Finally, we discuss emerging research directions such as dynamic and task-adaptive quantization, unified tokenization frameworks, and biologically inspired codebook learning. This survey bridges the gap between traditional vector quantization and modern LLM applications, serving as a foundational reference for the development of efficient and generalizable multimodal systems. A continuously updated version is available at: https://github.com/jindongli-Ai/LLM-Discrete-Tokenization-Survey.

  • 8 authors
·
Jul 21

Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions

The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.

  • 5 authors
·
Feb 20, 2024

VQ-Logits: Compressing the Output Bottleneck of Large Language Models via Vector Quantized Logits

Large Language Models (LLMs) have achieved remarkable success but face significant computational and memory challenges, particularly due to their extensive output vocabularies. The final linear projection layer, mapping hidden states to vocabulary-sized logits, often constitutes a substantial portion of the model's parameters and computational cost during inference. Existing methods like adaptive softmax or hierarchical softmax introduce structural complexities. In this paper, we propose VQ-Logits, a novel approach that leverages Vector Quantization (VQ) to drastically reduce the parameter count and computational load of the LLM output layer. VQ-Logits replaces the large V * dmodel output embedding matrix with a small, shared codebook of K embedding vectors (K << V ). Each token in the vocabulary is mapped to one of these K codebook vectors. The LLM predicts logits over this compact codebook, which are then efficiently "scattered" to the full vocabulary space using the learned or preassigned mapping. We demonstrate through extensive experiments on standard language modeling benchmarks (e.g., WikiText-103, C4) that VQ-Logits can achieve up to 99% parameter reduction in the output layer and 6x speedup in logit computation, with only a marginal 4% increase in perplexity compared to full softmax baselines. We further provide detailed ablation studies on codebook size, initialization, and learning strategies, showcasing the robustness and effectiveness of our approach.

  • 7 authors
·
May 15

Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling

Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.

  • 8 authors
·
Apr 7

DeepMMSearch-R1: Empowering Multimodal LLMs in Multimodal Web Search

Multimodal Large Language Models (MLLMs) in real-world applications require access to external knowledge sources and must remain responsive to the dynamic and ever-changing real-world information in order to address information-seeking and knowledge-intensive user queries. Existing approaches, such as retrieval augmented generation (RAG) methods, search agents, and search equipped MLLMs, often suffer from rigid pipelines, excessive search calls, and poorly constructed search queries, which result in inefficiencies and suboptimal outcomes. To address these limitations, we present DeepMMSearch-R1, the first multimodal LLM capable of performing on-demand, multi-turn web searches and dynamically crafting queries for both image and text search tools. Specifically, DeepMMSearch-R1 can initiate web searches based on relevant crops of the input image making the image search more effective, and can iteratively adapt text search queries based on retrieved information, thereby enabling self-reflection and self-correction. Our approach relies on a two-stage training pipeline: a cold start supervised finetuning phase followed by an online reinforcement learning optimization. For training, we introduce DeepMMSearchVQA, a novel multimodal VQA dataset created through an automated pipeline intermixed with real-world information from web search tools. This dataset contains diverse, multi-hop queries that integrate textual and visual information, teaching the model when to search, what to search for, which search tool to use and how to reason over the retrieved information. We conduct extensive experiments across a range of knowledge-intensive benchmarks to demonstrate the superiority of our approach. Finally, we analyze the results and provide insights that are valuable for advancing multimodal web-search.

apple Apple
·
Oct 14 2

Mitigating Object Hallucinations via Sentence-Level Early Intervention

Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose **SENTINEL** (**S**entence-level **E**arly i**N**tervention **T**hrough **IN**-domain pr**E**ference **L**earning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90\% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

  • 4 authors
·
Jul 16 2

Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding

We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.

  • 3 authors
·
Jun 5, 2023 9

RegionBLIP: A Unified Multi-modal Pre-training Framework for Holistic and Regional Comprehension

In this work, we investigate extending the comprehension of Multi-modal Large Language Models (MLLMs) to regional objects. To this end, we propose to extract features corresponding to regional objects as soft prompts for LLM, which provides a straightforward and scalable approach and eliminates the need for LLM fine-tuning. To effectively extract regional features from regular image features and irregular point cloud features, we present a novel and unified position-assisted feature extraction module. Furthermore, training an MLLM from scratch is highly time-consuming. Thus, we propose incrementally extending existing pre-trained MLLMs to comprehend more modalities and the regional objects of those modalities. Specifically, we freeze the Q-Former from BLIP-2, an impressive MLLM, and optimize the modality-specific Lora parameters in Q-Former and LLM for each newly introduced modality. The freezing of the Q-Former eliminates the need for extensive pre-training on massive image-text data. The freezed Q-Former pre-trained from massive image-text data is also beneficial for the pre-training on image-region-text data. We name our framework RegionBLIP. We pre-train RegionBLIP on image-region-text, point-cloud-text, and point-cloud-region-text data. Experimental results verify that can preserve the image comprehension capability of BILP-2 and further gain a comprehension of the newly introduced point cloud modality and regional objects. The Data, Code, and Pre-trained models will be available at https://github.com/mightyzau/RegionBLIP.

  • 6 authors
·
Aug 3, 2023

Improving Multi-modal Large Language Model through Boosting Vision Capabilities

We focus on improving the visual understanding capability for boosting the vision-language models. We propose Arcana, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``ladder'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at https://arcana-project-page.github.io.

  • 8 authors
·
Oct 17, 2024

APO: Enhancing Reasoning Ability of MLLMs via Asymmetric Policy Optimization

Multimodal Large Language Models (MLLMs) are powerful at integrating diverse data, but they often struggle with complex reasoning. While Reinforcement learning (RL) can boost reasoning in LLMs, applying it to MLLMs is tricky. Common issues include a drop in performance on general tasks and the generation of overly detailed or "overthinking" reasoning. Our work investigates how the KL penalty and overthinking affect RL training in MLLMs. We propose Asymmetric Policy Optimization (APO) to address these issues, which divides the sampled responses into positive and negative groups. For positive samples, Difficulty-Adaptive Divergence Shaping (DADS) is introduced to dynamically adjust the KL divergence weight based on their difficulty. This method prevents policy entropy from dropping sharply, improves training stability, utilizes samples better, and preserves the model's existing knowledge. For negative samples, Suboptimal Trajectory Complexity Regularization (STCR) is proposed to penalize overly long responses. This helps mitigate overthinking and encourages more concise reasoning while preserving the model's explorative capacity. We apply our method to Qwen2.5-VL-3B, creating View-R1-3B. View-R1-3B significantly enhances reasoning capabilities, showing an average 7\% gain over the base model and outperforming larger MLLMs (7-11B) on various reasoning benchmarks. Importantly, unlike other reasoning-tuned MLLMs that often degrade on general tasks, View-R1-3B maintains consistent improvement, demonstrating superior generalization. These results highlight the effectiveness and broad applicability of our DADS and STCR techniques for advancing complex multimodal reasoning in MLLMs. The code will be made available at https://github.com/Indolent-Kawhi/View-R1.

  • 7 authors
·
Jun 26

SwitchGPT: Adapting Large Language Models for Non-Text Outputs

Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.

  • 3 authors
·
Sep 14, 2023

Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction

Prevailing Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone, similar to how Large Language Models (LLMs) process the text tokens. However, the number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs. In this paper, we consider improving MLLM's efficiency from two scenarios, (I) Reducing computational cost without degrading the performance. (II) Improving the performance with given budgets. We start with our main finding that the ranking of each vision token sorted by attention scores is similar in each layer except the first layer. Based on it, we assume that the number of essential top vision tokens does not increase along layers. Accordingly, for Scenario I, we propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep. Interestingly, G-Search is able to reach the optimal reduction strategy based on our assumption. For Scenario II, based on the reduction strategy from G-Search, we design a parametric sigmoid function (P-Sigmoid) to guide the reduction at each layer of the MLLM, whose parameters are optimized by Bayesian Optimization. Extensive experiments demonstrate that our approach can significantly accelerate those popular MLLMs, e.g. LLaVA, and InternVL2 models, by more than 2 times without performance drops. Our approach also far outperforms other token reduction methods when budgets are limited, achieving a better trade-off between efficiency and effectiveness.

  • 10 authors
·
Nov 30, 2024

Q-VLM: Post-training Quantization for Large Vision-Language Models

In this paper, we propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference. Conventional quantization methods sequentially search the layer-wise rounding functions by minimizing activation discretization errors, which fails to acquire optimal quantization strategy without considering cross-layer dependency. On the contrary, we mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy searching with low search cost. Specifically, we observe the strong correlation between the activation entropy and the cross-layer dependency concerning output discretization errors. Therefore, we employ the entropy as the proxy to partition blocks optimally, which aims to achieve satisfying trade-offs between discretization errors and the search cost. Moreover, we optimize the visual encoder to disentangle the cross-layer dependency for fine-grained decomposition of search space, so that the search cost is further reduced without harming the quantization accuracy. Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multi-modal reasoning tasks. Code is available at https://github.com/ChangyuanWang17/QVLM.

  • 6 authors
·
Oct 10, 2024

MindGPT-4ov: An Enhanced MLLM via a Multi-Stage Post-Training Paradigm

We present MindGPT-4ov, a multimodal large language model (MLLM) that introduces a general post-training paradigm spanning data production, model training, and efficient deployment. It achieves state-of-the-art performance across multiple benchmarks at low cost, effectively enhancing the foundational capabilities of MLLMs and the generalization ability. Focusing on data construction, supervised fine-tuning strategies, and multimodal reinforcement learning methods, this work proposes three key innovations: (1) An information density-based data generation scheme, integrated with a dual-dimensional tree-structured label system, enabling automated generation of high-quality cross-domain data. (2) A collaborative curriculum supervised fine-tuning approach that balances the injection of domain-specific knowledge with the preservation of general capabilities. (3) A hybrid reinforcement learning paradigm that enhances reasoning ability while simultaneously addressing multi-objective optimization such as diversity exploration, maintenance of multimodal perception, and response conciseness. Moreover, we implement a series of infrastructure optimizations, such as 5D parallel training, operator optimization, and inference quantization to enhance training and inference efficiency while reducing the cost of domain adaptation. Experimental results demonstrate that the MindGPT-4ov model outperforms state-of-the-art models on benchmarks such as MMBench, MMStar, MathVision, and MathVista. In addition, MindGPT-4ov also demonstrates superior user experience in vertical domain tasks, enabling a seamless transition from academic research to industrial deployment. MindGPT-4ov provides a general post-training paradigm applicable to a wide range of MLLMs. The model weights, datasets, and code for the Qwen3-VL-based variants will be recently open-sourced to support the community's development of MLLMs.

  • 17 authors
·
Dec 2

Seeing the Forest and the Trees: Query-Aware Tokenizer for Long-Video Multimodal Language Models

Despite the recent advances in the video understanding ability of multimodal large language models (MLLMs), long video understanding remains a challenge. One of the main issues is that the number of vision tokens grows linearly with video length, which causes an explosion in attention cost, memory, and latency. To solve this challenge, we present Query-aware Token Selector (QTSplus), a lightweight yet powerful visual token selection module that serves as an information gate between the vision encoder and LLMs. Given a text query and video tokens, QTSplus dynamically selects the most important visual evidence for the input text query by (i) scoring visual tokens via cross-attention, (ii) predicting an instance-specific retention budget based on the complexity of the query, and (iii) selecting Top-n tokens with a differentiable straight-through estimator during training and a hard gate at inference. Furthermore, a small re-encoder preserves temporal order using absolute time information, enabling second-level localization while maintaining global coverage. Integrated into Qwen2.5-VL, QTSplus compresses the vision stream by up to 89\% and reduces end-to-end latency by 28\% on long videos. The evaluation on eight long video understanding benchmarks shows near-parity accuracy overall when compared with the original Qwen models and outperforms the original model by +20.5 and +5.6 points respectively on TempCompass direction and order accuracies. These results show that QTSplus is an effective, general mechanism for scaling MLLMs to real-world long-video scenarios while preserving task-relevant evidence. We will make all code, data, and trained models' weights publicly available.

AlpachinoNLP Alpachino
·
Nov 14

PILL: Plug Into LLM with Adapter Expert and Attention Gate

Due to the remarkable capabilities of powerful Large Language Models (LLMs) in effectively following instructions, there has been a growing number of assistants in the community to assist humans. Recently, significant progress has been made in the development of Vision Language Models (VLMs), expanding the capabilities of LLMs and enabling them to execute more diverse instructions. However, it is foreseeable that models will likely need to handle tasks involving additional modalities such as speech, video, and others. This poses a particularly prominent challenge of dealing with the complexity of mixed modalities. To address this, we introduce a novel architecture called PILL: Plug Into LLM with adapter expert and attention gate to better decouple these complex modalities and leverage efficient fine-tuning. We introduce two modules: Firstly, utilizing Mixture-of-Modality-Adapter-Expert to independently handle different modalities, enabling better adaptation to downstream tasks while preserving the expressive capability of the original model. Secondly, by introducing Modality-Attention-Gating, which enables adaptive control of the contribution of modality tokens to the overall representation. In addition, we have made improvements to the Adapter to enhance its learning and expressive capabilities. Experimental results demonstrate that our approach exhibits competitive performance compared to other mainstream methods for modality fusion. For researchers interested in our work, we provide free access to the code and models at https://github.com/DsaltYfish/PILL.

  • 4 authors
·
Nov 3, 2023

Lizard: An Efficient Linearization Framework for Large Language Models

We propose Lizard, a linearization framework that transforms pretrained Transformer-based Large Language Models (LLMs) into flexible, subquadratic architectures for infinite-context generation. Transformer-based LLMs face significant memory and computational bottlenecks as context lengths increase, due to the quadratic complexity of softmax attention and the growing key-value (KV) cache. Lizard addresses these limitations by introducing a subquadratic attention mechanism that closely approximates softmax attention while preserving the output quality. Unlike previous linearization methods, which are often limited by fixed model structures and therefore exclude gating mechanisms, Lizard incorporates a gating module inspired by recent state-of-the-art linear models. This enables adaptive memory control, supports constant-memory inference, offers strong length generalization, and allows more flexible model design. Lizard combines gated linear attention for global context compression with sliding window attention enhanced by meta memory, forming a hybrid mechanism that captures both long-range dependencies and fine-grained local interactions. Moreover, we introduce a hardware-aware algorithm that accelerates the training speed of our models. Extensive experiments show that Lizard achieves near-lossless recovery of the teacher model's performance across standard language modeling tasks, while significantly outperforming previous linearization methods. On the 5-shot MMLU benchmark, Lizard improves over prior models by 18 points and shows significant improvements on associative recall tasks.

Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources

The reproduction of state-of-the-art multimodal LLM pre-training faces barriers at every stage of the pipeline, including high-quality data filtering, multimodal data mixture strategies, sequence packing techniques, and training frameworks. We introduce Open-Qwen2VL, a fully open-source 2B-parameter Multimodal Large Language Model pre-trained efficiently on 29M image-text pairs using only 442 A100-40G GPU hours. Our approach employs low-to-high dynamic image resolution and multimodal sequence packing to significantly enhance pre-training efficiency. The training dataset was carefully curated using both MLLM-based filtering techniques (e.g., MLM-Filter) and conventional CLIP-based filtering methods, substantially improving data quality and training efficiency. The Open-Qwen2VL pre-training is conducted on academic level 8xA100-40G GPUs at UCSB on 5B packed multimodal tokens, which is 0.36\% of 1.4T multimodal pre-training tokens of Qwen2-VL. The final instruction-tuned Open-Qwen2VL outperforms partially-open state-of-the-art MLLM Qwen2-VL-2B on various multimodal benchmarks of MMBench, SEEDBench, MMstar, and MathVista, indicating the remarkable training efficiency of Open-Qwen2VL. We open-source all aspects of our work, including compute-efficient and data-efficient training details, data filtering methods, sequence packing scripts, pre-training data in WebDataset format, FSDP-based training codebase, and both base and instruction-tuned model checkpoints. We redefine "fully open" for multimodal LLMs as the complete release of: 1) the training codebase, 2) detailed data filtering techniques, and 3) all pre-training and supervised fine-tuning data used to develop the model.

  • 5 authors
·
Apr 1 7

TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have shown impressive results on various multimodal tasks. However, most existing MLLMs are not well suited for document-oriented tasks, which require fine-grained image perception and information compression. In this paper, we present TextHawk, a MLLM that is specifically designed for document-oriented tasks, while preserving the general capabilities of MLLMs. TextHawk is aimed to explore efficient fine-grained perception by designing four dedicated components. Firstly, a ReSampling and ReArrangement (ReSA) module is proposed to reduce the redundancy in the document texts and lower the computational cost of the MLLM. We explore encoding the positions of each local feature by presenting Scalable Positional Embeddings (SPEs), which can preserve the scalability of various image sizes. A Query Proposal Network (QPN) is then adopted to initialize the queries dynamically among different sub-images. To further enhance the fine-grained visual perceptual ability of the MLLM, we design a Multi-Level Cross-Attention (MLCA) mechanism that captures the hierarchical structure and semantic relations of document images. Furthermore, we create a new instruction-tuning dataset for document-oriented tasks by enriching the multimodal document data with Gemini Pro. We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods, demonstrating its effectiveness and superiority in fine-grained document perception and general abilities.

  • 6 authors
·
Apr 14, 2024

V-Zen: Efficient GUI Understanding and Precise Grounding With A Novel Multimodal LLM

In the rapidly evolving landscape of AI research and application, Multimodal Large Language Models (MLLMs) have emerged as a transformative force, adept at interpreting and integrating information from diverse modalities such as text, images, and Graphical User Interfaces (GUIs). Despite these advancements, the nuanced interaction and understanding of GUIs pose a significant challenge, limiting the potential of existing models to enhance automation levels. To bridge this gap, this paper presents V-Zen, an innovative Multimodal Large Language Model (MLLM) meticulously crafted to revolutionise the domain of GUI understanding and grounding. Equipped with dual-resolution image encoders, V-Zen establishes new benchmarks in efficient grounding and next-action prediction, thereby laying the groundwork for self-operating computer systems. Complementing V-Zen is the GUIDE dataset, an extensive collection of real-world GUI elements and task-based sequences, serving as a catalyst for specialised fine-tuning. The successful integration of V-Zen and GUIDE marks the dawn of a new era in multimodal AI research, opening the door to intelligent, autonomous computing experiences. This paper extends an invitation to the research community to join this exciting journey, shaping the future of GUI automation. In the spirit of open science, our code, data, and model will be made publicly available, paving the way for multimodal dialogue scenarios with intricate and precise interactions.

  • 7 authors
·
May 24, 2024

Qwen2.5 Technical Report

In this report, we introduce Qwen2.5, a comprehensive series of large language models (LLMs) designed to meet diverse needs. Compared to previous iterations, Qwen 2.5 has been significantly improved during both the pre-training and post-training stages. In terms of pre-training, we have scaled the high-quality pre-training datasets from the previous 7 trillion tokens to 18 trillion tokens. This provides a strong foundation for common sense, expert knowledge, and reasoning capabilities. In terms of post-training, we implement intricate supervised finetuning with over 1 million samples, as well as multistage reinforcement learning. Post-training techniques enhance human preference, and notably improve long text generation, structural data analysis, and instruction following. To handle diverse and varied use cases effectively, we present Qwen2.5 LLM series in rich sizes. Open-weight offerings include base and instruction-tuned models, with quantized versions available. In addition, for hosted solutions, the proprietary models currently include two mixture-of-experts (MoE) variants: Qwen2.5-Turbo and Qwen2.5-Plus, both available from Alibaba Cloud Model Studio. Qwen2.5 has demonstrated top-tier performance on a wide range of benchmarks evaluating language understanding, reasoning, mathematics, coding, human preference alignment, etc. Specifically, the open-weight flagship Qwen2.5-72B-Instruct outperforms a number of open and proprietary models and demonstrates competitive performance to the state-of-the-art open-weight model, Llama-3-405B-Instruct, which is around 5 times larger. Qwen2.5-Turbo and Qwen2.5-Plus offer superior cost-effectiveness while performing competitively against GPT-4o-mini and GPT-4o respectively. Additionally, as the foundation, Qwen2.5 models have been instrumental in training specialized models such as Qwen2.5-Math, Qwen2.5-Coder, QwQ, and multimodal models.

  • 42 authors
·
Dec 19, 2024 11

Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy

We introduce Long-VITA, a simple yet effective large multi-modal model for long-context visual-language understanding tasks. It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens while delivering advanced performances on short-context multi-modal tasks. We propose an effective multi-modal training schema that starts with large language models and proceeds through vision-language alignment, general knowledge learning, and two sequential stages of long-sequence fine-tuning. We further implement context-parallelism distributed inference and logits-masked language modeling head to scale Long-VITA to infinitely long inputs of images and texts during model inference. Regarding training data, Long-VITA is built on a mix of 17M samples from public datasets only and demonstrates the state-of-the-art performance on various multi-modal benchmarks, compared against recent cutting-edge models with internal data. Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing. By leveraging our inference designs, Long-VITA models achieve a remarkable 2x prefill speedup and 4x context length extension in single node with 8 GPUs. We hope Long-VITA can serve as a competitive baseline and offer valuable insights for the open-source community in advancing long-context multi-modal understanding.

  • 16 authors
·
Feb 7

RAVEN: Query-Guided Representation Alignment for Question Answering over Audio, Video, Embedded Sensors, and Natural Language

Multimodal question answering (QA) often requires identifying which video, audio, or sensor tokens are relevant to the question. Yet modality disagreements are common: off-camera speech, background noise, or motion outside the field of view often mislead fusion models that weight all streams equally. We present RAVEN, a unified QA architecture whose core is QuART, a query-conditioned cross-modal gating module that assigns scalar relevance scores to each token across modalities, enabling the model to amplify informative signals and suppress distractors before fusion. RAVEN is trained through a three-stage pipeline comprising unimodal pretraining, query-aligned fusion, and disagreement-oriented fine-tuning -- each stage targeting a distinct challenge in multi-modal reasoning: representation quality, cross-modal relevance, and robustness to modality mismatch. To support training and evaluation, we release AVS-QA, a dataset of 300K synchronized Audio--Video-Sensor streams paired with automatically generated question-answer pairs. Experimental results on seven multi-modal QA benchmarks -- including egocentric and exocentric tasks -- show that RAVEN achieves up to 14.5\% and 8.0\% gains in accuracy compared to state-of-the-art multi-modal large language models, respectively. Incorporating sensor data provides an additional 16.4\% boost, and the model remains robust under modality corruption, outperforming SOTA baselines by 50.23\%. Our code and dataset are available at https://github.com/BASHLab/RAVEN.

  • 3 authors
·
May 21

Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models

Neural sequence models are widely used to model time-series data. Equally ubiquitous is the usage of beam search (BS) as an approximate inference algorithm to decode output sequences from these models. BS explores the search space in a greedy left-right fashion retaining only the top-B candidates - resulting in sequences that differ only slightly from each other. Producing lists of nearly identical sequences is not only computationally wasteful but also typically fails to capture the inherent ambiguity of complex AI tasks. To overcome this problem, we propose Diverse Beam Search (DBS), an alternative to BS that decodes a list of diverse outputs by optimizing for a diversity-augmented objective. We observe that our method finds better top-1 solutions by controlling for the exploration and exploitation of the search space - implying that DBS is a better search algorithm. Moreover, these gains are achieved with minimal computational or memory over- head as compared to beam search. To demonstrate the broad applicability of our method, we present results on image captioning, machine translation and visual question generation using both standard quantitative metrics and qualitative human studies. Further, we study the role of diversity for image-grounded language generation tasks as the complexity of the image changes. We observe that our method consistently outperforms BS and previously proposed techniques for diverse decoding from neural sequence models.

  • 7 authors
·
Oct 7, 2016

Reformulating Vision-Language Foundation Models and Datasets Towards Universal Multimodal Assistants

Recent Multimodal Large Language Models (MLLMs) exhibit impressive abilities to perceive images and follow open-ended instructions. The capabilities of MLLMs depend on two crucial factors: the model architecture to facilitate the feature alignment of visual modules and large language models; the multimodal instruction tuning datasets for human instruction following. (i) For the model architecture, most existing models introduce an external bridge module to connect vision encoders with language models, which needs an additional feature-alignment pre-training. In this work, we discover that compact pre-trained vision language models can inherently serve as ``out-of-the-box'' bridges between vision and language. Based on this, we propose Muffin framework, which directly employs pre-trained vision-language models to act as providers of visual signals. (ii) For the multimodal instruction tuning datasets, existing methods omit the complementary relationship between different datasets and simply mix datasets from different tasks. Instead, we propose UniMM-Chat dataset which explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions. We merge information describing the same image from diverse datasets and transforms it into more knowledge-intensive conversation data. Experimental results demonstrate the effectiveness of the Muffin framework and UniMM-Chat dataset. Muffin achieves state-of-the-art performance on a wide range of vision-language tasks, significantly surpassing state-of-the-art models like LLaVA and InstructBLIP. Our model and dataset are all accessible at https://github.com/thunlp/muffin.

  • 13 authors
·
Oct 1, 2023

Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language Models

While Large Language Models (LLMs) have demonstrated remarkable potential in natural language generation and instruction following, a persistent challenge lies in their susceptibility to "hallucinations", which erodes trust in their outputs. Although Uncertainty Quantification (UQ) presents a promising solution, its accurate implementation within the context of LLMs remains a significant hurdle. To address this critical roadblock, our research originates from a fundamental heuristic insight: tokens within auto-regressive LLM-generated text do not equally reflect the underlying meaning. Some tokens carry greater relevance and representativeness than others, owing to the phenomenon of "linguistic redundancy", wherein a select few keywords suffice to convey the essence of lengthy sentences. Regrettably, existing methodologies treat all tokens with equal importance when estimating uncertainty, disregarding these inherent generative inequalities. Our analysis reveals a significant issue with state-of-the-art: numerous tokens (and sentences) of limited semantic significance receive equal or even excessive weighting during uncertainty estimation. To rectify this bias, we propose to jointly Shifting Attention to more Relevant (SAR) components, at both the token- and the sentence-levels for accurate uncertainty estimation. We conduct extensive experiments involving a range of popular "off-the-shelf" LLMs, including instruction-tuned LLMs such as Vicuna, WizardLM, and LLaMA-2-chat, as well as pretrained LLMs like OPT and LLaMA, with model sizes extending up to 33B parameters. We carry out evaluation across various free-form question-answering tasks, encompassing domains such as reading comprehension, science Q&A, and medical Q&A. Our experimental results demonstrate the superior performance of SAR in addressing the challenges of uncertainty estimation within the realm of LLMs.

  • 8 authors
·
Jul 3, 2023

MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning

Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.

  • 6 authors
·
Jul 29

DeepDialogue: A Multi-Turn Emotionally-Rich Spoken Dialogue Dataset

Recent advances in conversational AI have demonstrated impressive capabilities in single-turn responses, yet multi-turn dialogues remain challenging for even the most sophisticated language models. Current dialogue datasets are limited in their emotional range, domain diversity, turn depth, and are predominantly text-only, hindering progress in developing more human-like conversational systems across modalities. To address these limitations, we present DeepDialogue, a large-scale multimodal dataset containing 40,150 high-quality multi-turn dialogues spanning 41 domains and incorporating 20 distinct emotions with coherent emotional progressions. Our approach pairs 9 different language models (4B-72B parameters) to generate 65,600 initial conversations, which we then evaluate through a combination of human annotation and LLM-based quality filtering. The resulting dataset reveals fundamental insights: smaller models fail to maintain coherence beyond 6 dialogue turns; concrete domains (e.g., "cars," "travel") yield more meaningful conversations than abstract ones (e.g., "philosophy"); and cross-model interactions produce more coherent dialogues than same-model conversations. A key contribution of DeepDialogue is its speech component, where we synthesize emotion-consistent voices for all 40,150 dialogues, creating the first large-scale open-source multimodal dialogue dataset that faithfully preserves emotional context across multi-turn conversations.

  • 3 authors
·
May 26

WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning

Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise. While recent works have attempted to adapt DeepSeek-R1-style reinforcement learning (RL) training paradigms to multimodal large language models (MLLM), focusing on domain-specific tasks like math and visual perception, a critical question remains: How can we achieve the general-purpose visual-language reasoning through RL? To address this challenge, we make three key efforts: (1) A novel Scalable Multimodal QA Synthesis pipeline that autonomously generates context-aware, reasoning-centric question-answer (QA) pairs directly from the given images. (2) The open-source WeThink dataset containing over 120K multimodal QA pairs with annotated reasoning paths, curated from 18 diverse dataset sources and covering various question domains. (3) A comprehensive exploration of RL on our dataset, incorporating a hybrid reward mechanism that combines rule-based verification with model-based assessment to optimize RL training efficiency across various task domains. Across 14 diverse MLLM benchmarks, we demonstrate that our WeThink dataset significantly enhances performance, from mathematical reasoning to diverse general multimodal tasks. Moreover, we show that our automated data pipeline can continuously increase data diversity to further improve model performance.

  • 7 authors
·
Jun 9

LlamaFusion: Adapting Pretrained Language Models for Multimodal Generation

We present LlamaFusion, a framework for empowering pretrained text-only large language models (LLMs) with multimodal generative capabilities, enabling them to understand and generate both text and images in arbitrary sequences. LlamaFusion leverages existing Llama-3's weights for processing texts autoregressively while introducing additional and parallel transformer modules for processing images with diffusion. During training, the data from each modality is routed to its dedicated modules: modality-specific feedforward layers, query-key-value projections, and normalization layers process each modality independently, while the shared self-attention layers allow interactions across text and image features. By freezing the text-specific modules and only training the image-specific modules, LlamaFusion preserves the language capabilities of text-only LLMs while developing strong visual understanding and generation abilities. Compared to methods that pretrain multimodal generative models from scratch, our experiments demonstrate that, LlamaFusion improves image understanding by 20% and image generation by 3.6% using only 50% of the FLOPs while maintaining Llama-3's language capabilities. We also demonstrate that this framework can adapt existing vision-language models with multimodal generation ability. Overall, this framework not only leverages existing computational investments in text-only LLMs but also enables the parallel development of language and vision capabilities, presenting a promising direction for efficient multimodal model development.

  • 7 authors
·
Dec 19, 2024

ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2

Multimodal Large Language Models (MLLMs) have attracted much attention due to their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model that utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear extension and fast processing of long sequences. We replace the Transformer based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning. We also try various visual encoders and Mamba-2 model variants. Our extensive experiments conducted in various multimodal benchmark tests have demonstrated the competitive performance of ML-Mamba and highlighted the potential of state space models in multimodal tasks. The experimental results show that: (1) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling, while also having faster inference speed; (2) ML-Mamba performs well in visual hallucinations and spatial relationship judgment in closed set benchmark tests; (3) ML-Mamba achieves performance comparable to LLaVA while reducing the number of parameters by 40\%.(4) Compared to the multimodal model using the original Mamba model, the Mamba-2 based large-scale multimodal language model has stronger inference performance and effectiveness.

  • 2 authors
·
Jul 29, 2024

Veagle: Advancements in Multimodal Representation Learning

Lately, researchers in artificial intelligence have been really interested in how language and vision come together, giving rise to the development of multimodal models that aim to seamlessly integrate textual and visual information. Multimodal models, an extension of Large Language Models (LLMs), have exhibited remarkable capabilities in addressing a diverse array of tasks, ranging from image captioning and visual question answering (VQA) to visual grounding. While these models have showcased significant advancements, challenges persist in accurately interpreting images and answering the question, a common occurrence in real-world scenarios. This paper introduces a novel approach to enhance the multimodal capabilities of existing models. In response to the limitations observed in current Vision Language Models (VLMs) and Multimodal Large Language Models (MLLMs), our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works. Veagle leverages a dynamic mechanism to project encoded visual information directly into the language model. This dynamic approach allows for a more nuanced understanding of intricate details present in visual contexts. To validate the effectiveness of Veagle, we conduct comprehensive experiments on benchmark datasets, emphasizing tasks such as visual question answering and image understanding. Our results indicate a improvement of 5-6 \% in performance, with Veagle outperforming existing models by a notable margin. The outcomes underscore the model's versatility and applicability beyond traditional benchmarks.

  • 9 authors
·
Jan 18, 2024 1