new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

FantasyVLN: Unified Multimodal Chain-of-Thought Reasoning for Vision-Language Navigation

Achieving human-level performance in Vision-and-Language Navigation (VLN) requires an embodied agent to jointly understand multimodal instructions and visual-spatial context while reasoning over long action sequences. Recent works, such as NavCoT and NavGPT-2, demonstrate the potential of Chain-of-Thought (CoT) reasoning for improving interpretability and long-horizon planning. Moreover, multimodal extensions like OctoNav-R1 and CoT-VLA further validate CoT as a promising pathway toward human-like navigation reasoning. However, existing approaches face critical drawbacks: purely textual CoTs lack spatial grounding and easily overfit to sparse annotated reasoning steps, while multimodal CoTs incur severe token inflation by generating imagined visual observations, making real-time navigation impractical. In this work, we propose FantasyVLN, a unified implicit reasoning framework that preserves the benefits of CoT reasoning without explicit token overhead. Specifically, imagined visual tokens are encoded into a compact latent space using a pretrained Visual AutoRegressor (VAR) during CoT reasoning training, and the model jointly learns from textual, visual, and multimodal CoT modes under a unified multi-CoT strategy. At inference, our model performs direct instruction-to-action mapping while still enjoying reasoning-aware representations. Extensive experiments on LH-VLN show that our approach achieves reasoning-aware yet real-time navigation, improving success rates and efficiency while reducing inference latency by an order of magnitude compared to explicit CoT methods.

Towards Long-Horizon Vision-Language Navigation: Platform, Benchmark and Method

Existing Vision-Language Navigation (VLN) methods primarily focus on single-stage navigation, limiting their effectiveness in multi-stage and long-horizon tasks within complex and dynamic environments. To address these limitations, we propose a novel VLN task, named Long-Horizon Vision-Language Navigation (LH-VLN), which emphasizes long-term planning and decision consistency across consecutive subtasks. Furthermore, to support LH-VLN, we develop an automated data generation platform NavGen, which constructs datasets with complex task structures and improves data utility through a bidirectional, multi-granularity generation approach. To accurately evaluate complex tasks, we construct the Long-Horizon Planning and Reasoning in VLN (LHPR-VLN) benchmark consisting of 3,260 tasks with an average of 150 task steps, serving as the first dataset specifically designed for the long-horizon vision-language navigation task. Furthermore, we propose Independent Success Rate (ISR), Conditional Success Rate (CSR), and CSR weight by Ground Truth (CGT) metrics, to provide fine-grained assessments of task completion. To improve model adaptability in complex tasks, we propose a novel Multi-Granularity Dynamic Memory (MGDM) module that integrates short-term memory blurring with long-term memory retrieval to enable flexible navigation in dynamic environments. Our platform, benchmark and method supply LH-VLN with a robust data generation pipeline, comprehensive model evaluation dataset, reasonable metrics, and a novel VLN model, establishing a foundational framework for advancing LH-VLN.

  • 6 authors
·
Dec 12, 2024