Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Generalist Dynamics Model for Control
We investigate the use of transformer sequence models as dynamics models (TDMs) for control. In a number of experiments in the DeepMind control suite, we find that first, TDMs perform well in a single-environment learning setting when compared to baseline models. Second, TDMs exhibit strong generalization capabilities to unseen environments, both in a few-shot setting, where a generalist model is fine-tuned with small amounts of data from the target environment, and in a zero-shot setting, where a generalist model is applied to an unseen environment without any further training. We further demonstrate that generalizing system dynamics can work much better than generalizing optimal behavior directly as a policy. This makes TDMs a promising ingredient for a foundation model of control.
The Unsurprising Effectiveness of Pre-Trained Vision Models for Control
Recent years have seen the emergence of pre-trained representations as a powerful abstraction for AI applications in computer vision, natural language, and speech. However, policy learning for control is still dominated by a tabula-rasa learning paradigm, with visuo-motor policies often trained from scratch using data from deployment environments. In this context, we revisit and study the role of pre-trained visual representations for control, and in particular representations trained on large-scale computer vision datasets. Through extensive empirical evaluation in diverse control domains (Habitat, DeepMind Control, Adroit, Franka Kitchen), we isolate and study the importance of different representation training methods, data augmentations, and feature hierarchies. Overall, we find that pre-trained visual representations can be competitive or even better than ground-truth state representations to train control policies. This is in spite of using only out-of-domain data from standard vision datasets, without any in-domain data from the deployment environments. Source code and more at https://sites.google.com/view/pvr-control.
Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning
We present DrQ-v2, a model-free reinforcement learning (RL) algorithm for visual continuous control. DrQ-v2 builds on DrQ, an off-policy actor-critic approach that uses data augmentation to learn directly from pixels. We introduce several improvements that yield state-of-the-art results on the DeepMind Control Suite. Notably, DrQ-v2 is able to solve complex humanoid locomotion tasks directly from pixel observations, previously unattained by model-free RL. DrQ-v2 is conceptually simple, easy to implement, and provides significantly better computational footprint compared to prior work, with the majority of tasks taking just 8 hours to train on a single GPU. Finally, we publicly release DrQ-v2's implementation to provide RL practitioners with a strong and computationally efficient baseline.
Adaptive Regularization of Representation Rank as an Implicit Constraint of Bellman Equation
Representation rank is an important concept for understanding the role of Neural Networks (NNs) in Deep Reinforcement learning (DRL), which measures the expressive capacity of value networks. Existing studies focus on unboundedly maximizing this rank; nevertheless, that approach would introduce overly complex models in the learning, thus undermining performance. Hence, fine-tuning representation rank presents a challenging and crucial optimization problem. To address this issue, we find a guiding principle for adaptive control of the representation rank. We employ the Bellman equation as a theoretical foundation and derive an upper bound on the cosine similarity of consecutive state-action pairs representations of value networks. We then leverage this upper bound to propose a novel regularizer, namely BEllman Equation-based automatic rank Regularizer (BEER). This regularizer adaptively regularizes the representation rank, thus improving the DRL agent's performance. We first validate the effectiveness of automatic control of rank on illustrative experiments. Then, we scale up BEER to complex continuous control tasks by combining it with the deterministic policy gradient method. Among 12 challenging DeepMind control tasks, BEER outperforms the baselines by a large margin. Besides, BEER demonstrates significant advantages in Q-value approximation. Our code is available at https://github.com/sweetice/BEER-ICLR2024.
CURL: Contrastive Unsupervised Representations for Reinforcement Learning
We present CURL: Contrastive Unsupervised Representations for Reinforcement Learning. CURL extracts high-level features from raw pixels using contrastive learning and performs off-policy control on top of the extracted features. CURL outperforms prior pixel-based methods, both model-based and model-free, on complex tasks in the DeepMind Control Suite and Atari Games showing 1.9x and 1.2x performance gains at the 100K environment and interaction steps benchmarks respectively. On the DeepMind Control Suite, CURL is the first image-based algorithm to nearly match the sample-efficiency of methods that use state-based features. Our code is open-sourced and available at https://github.com/MishaLaskin/curl.
Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models
Incorporating the successful paradigm of pretraining and finetuning from Computer Vision and Natural Language Processing into decision-making has become increasingly popular in recent years. In this paper, we study Imitation Learning from Observation with pretrained models and find existing approaches such as BCO and AIME face knowledge barriers, specifically the Embodiment Knowledge Barrier (EKB) and the Demonstration Knowledge Barrier (DKB), greatly limiting their performance. The EKB arises when pretrained models lack knowledge about unseen observations, leading to errors in action inference. The DKB results from policies trained on limited demonstrations, hindering adaptability to diverse scenarios. We thoroughly analyse the underlying mechanism of these barriers and propose AIME-v2 upon AIME as a solution. AIME-v2 uses online interactions with data-driven regulariser to alleviate the EKB and mitigates the DKB by introducing a surrogate reward function to enhance policy training. Experimental results on tasks from the DeepMind Control Suite and Meta-World benchmarks demonstrate the effectiveness of these modifications in improving both sample-efficiency and converged performance. The study contributes valuable insights into resolving knowledge barriers for enhanced decision-making in pretraining-based approaches. Code will be available at https://github.com/argmax-ai/aime-v2.
Denoised MDPs: Learning World Models Better Than the World Itself
The ability to separate signal from noise, and reason with clean abstractions, is critical to intelligence. With this ability, humans can efficiently perform real world tasks without considering all possible nuisance factors.How can artificial agents do the same? What kind of information can agents safely discard as noises? In this work, we categorize information out in the wild into four types based on controllability and relation with reward, and formulate useful information as that which is both controllable and reward-relevant. This framework clarifies the kinds information removed by various prior work on representation learning in reinforcement learning (RL), and leads to our proposed approach of learning a Denoised MDP that explicitly factors out certain noise distractors. Extensive experiments on variants of DeepMind Control Suite and RoboDesk demonstrate superior performance of our denoised world model over using raw observations alone, and over prior works, across policy optimization control tasks as well as the non-control task of joint position regression.
Watch and Match: Supercharging Imitation with Regularized Optimal Transport
Imitation learning holds tremendous promise in learning policies efficiently for complex decision making problems. Current state-of-the-art algorithms often use inverse reinforcement learning (IRL), where given a set of expert demonstrations, an agent alternatively infers a reward function and the associated optimal policy. However, such IRL approaches often require substantial online interactions for complex control problems. In this work, we present Regularized Optimal Transport (ROT), a new imitation learning algorithm that builds on recent advances in optimal transport based trajectory-matching. Our key technical insight is that adaptively combining trajectory-matching rewards with behavior cloning can significantly accelerate imitation even with only a few demonstrations. Our experiments on 20 visual control tasks across the DeepMind Control Suite, the OpenAI Robotics Suite, and the Meta-World Benchmark demonstrate an average of 7.8X faster imitation to reach 90% of expert performance compared to prior state-of-the-art methods. On real-world robotic manipulation, with just one demonstration and an hour of online training, ROT achieves an average success rate of 90.1% across 14 tasks.
MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks. However, current algorithms suffer from low sample efficiency, limiting their practical applicability. In this work, we present MENTOR, a method that improves both the architecture and optimization of RL agents. Specifically, MENTOR replaces the standard multi-layer perceptron (MLP) with a mixture-of-experts (MoE) backbone, enhancing the agent's ability to handle complex tasks by leveraging modular expert learning to avoid gradient conflicts. Furthermore, MENTOR introduces a task-oriented perturbation mechanism, which heuristically samples perturbation candidates containing task-relevant information, leading to more targeted and effective optimization. MENTOR outperforms state-of-the-art methods across three simulation domains -- DeepMind Control Suite, Meta-World, and Adroit. Additionally, MENTOR achieves an average of 83% success rate on three challenging real-world robotic manipulation tasks including peg insertion, cable routing, and tabletop golf, which significantly surpasses the success rate of 32% from the current strongest model-free visual RL algorithm. These results underscore the importance of sample efficiency in advancing visual RL for real-world robotics. Experimental videos are available at https://suninghuang19.github.io/mentor_page.
Generalization in Reinforcement Learning by Soft Data Augmentation
Extensive efforts have been made to improve the generalization ability of Reinforcement Learning (RL) methods via domain randomization and data augmentation. However, as more factors of variation are introduced during training, optimization becomes increasingly challenging, and empirically may result in lower sample efficiency and unstable training. Instead of learning policies directly from augmented data, we propose SOft Data Augmentation (SODA), a method that decouples augmentation from policy learning. Specifically, SODA imposes a soft constraint on the encoder that aims to maximize the mutual information between latent representations of augmented and non-augmented data, while the RL optimization process uses strictly non-augmented data. Empirical evaluations are performed on diverse tasks from DeepMind Control suite as well as a robotic manipulation task, and we find SODA to significantly advance sample efficiency, generalization, and stability in training over state-of-the-art vision-based RL methods.
Self-Supervised Policy Adaptation during Deployment
In most real world scenarios, a policy trained by reinforcement learning in one environment needs to be deployed in another, potentially quite different environment. However, generalization across different environments is known to be hard. A natural solution would be to keep training after deployment in the new environment, but this cannot be done if the new environment offers no reward signal. Our work explores the use of self-supervision to allow the policy to continue training after deployment without using any rewards. While previous methods explicitly anticipate changes in the new environment, we assume no prior knowledge of those changes yet still obtain significant improvements. Empirical evaluations are performed on diverse simulation environments from DeepMind Control suite and ViZDoom, as well as real robotic manipulation tasks in continuously changing environments, taking observations from an uncalibrated camera. Our method improves generalization in 31 out of 36 environments across various tasks and outperforms domain randomization on a majority of environments.
Premier-TACO: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss
We present Premier-TACO, a multitask feature representation learning approach designed to improve few-shot policy learning efficiency in sequential decision-making tasks. Premier-TACO leverages a subset of multitask offline datasets for pretraining a general feature representation, which captures critical environmental dynamics and is fine-tuned using minimal expert demonstrations. It advances the temporal action contrastive learning (TACO) objective, known for state-of-the-art results in visual control tasks, by incorporating a novel negative example sampling strategy. This strategy is crucial in significantly boosting TACO's computational efficiency, making large-scale multitask offline pretraining feasible. Our extensive empirical evaluation in a diverse set of continuous control benchmarks including Deepmind Control Suite, MetaWorld, and LIBERO demonstrate Premier-TACO's effectiveness in pretraining visual representations, significantly enhancing few-shot imitation learning of novel tasks. Our code, pretraining data, as well as pretrained model checkpoints will be released at https://github.com/PremierTACO/premier-taco.
Adversarial Imitation Learning via Boosting
Adversarial imitation learning (AIL) has stood out as a dominant framework across various imitation learning (IL) applications, with Discriminator Actor Critic (DAC) (Kostrikov et al.,, 2019) demonstrating the effectiveness of off-policy learning algorithms in improving sample efficiency and scalability to higher-dimensional observations. Despite DAC's empirical success, the original AIL objective is on-policy and DAC's ad-hoc application of off-policy training does not guarantee successful imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE (Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL objective. Instead in this work, we develop a novel and principled AIL algorithm via the framework of boosting. Like boosting, our new algorithm, AILBoost, maintains an ensemble of properly weighted weak learners (i.e., policies) and trains a discriminator that witnesses the maximum discrepancy between the distributions of the ensemble and the expert policy. We maintain a weighted replay buffer to represent the state-action distribution induced by the ensemble, allowing us to train discriminators using the entire data collected so far. In the weighted replay buffer, the contribution of the data from older policies are properly discounted with the weight computed based on the boosting framework. Empirically, we evaluate our algorithm on both controller state-based and pixel-based environments from the DeepMind Control Suite. AILBoost outperforms DAC on both types of environments, demonstrating the benefit of properly weighting replay buffer data for off-policy training. On state-based environments, DAC outperforms ValueDICE and IQ-Learn (Gary et al., 2021), achieving competitive performance with as little as one expert trajectory.
Learning and Planning in Complex Action Spaces
Many important real-world problems have action spaces that are high-dimensional, continuous or both, making full enumeration of all possible actions infeasible. Instead, only small subsets of actions can be sampled for the purpose of policy evaluation and improvement. In this paper, we propose a general framework to reason in a principled way about policy evaluation and improvement over such sampled action subsets. This sample-based policy iteration framework can in principle be applied to any reinforcement learning algorithm based upon policy iteration. Concretely, we propose Sampled MuZero, an extension of the MuZero algorithm that is able to learn in domains with arbitrarily complex action spaces by planning over sampled actions. We demonstrate this approach on the classical board game of Go and on two continuous control benchmark domains: DeepMind Control Suite and Real-World RL Suite.
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Unlike most reinforcement learning agents which require an unrealistic amount of environment interactions to learn a new behaviour, humans excel at learning quickly by merely observing and imitating others. This ability highly depends on the fact that humans have a model of their own embodiment that allows them to infer the most likely actions that led to the observed behaviour. In this paper, we propose Action Inference by Maximising Evidence (AIME) to replicate this behaviour using world models. AIME consists of two distinct phases. In the first phase, the agent learns a world model from its past experience to understand its own body by maximising the ELBO. While in the second phase, the agent is given some observation-only demonstrations of an expert performing a novel task and tries to imitate the expert's behaviour. AIME achieves this by defining a policy as an inference model and maximising the evidence of the demonstration under the policy and world model. Our method is "zero-shot" in the sense that it does not require further training for the world model or online interactions with the environment after given the demonstration. We empirically validate the zero-shot imitation performance of our method on the Walker and Cheetah embodiment of the DeepMind Control Suite and find it outperforms the state-of-the-art baselines. Code is available at: https://github.com/argmax-ai/aime.
Vid2Act: Activate Offline Videos for Visual RL
Pretraining RL models on offline video datasets is a promising way to improve their training efficiency in online tasks, but challenging due to the inherent mismatch in tasks, dynamics, and behaviors across domains. A recent model, APV, sidesteps the accompanied action records in offline datasets and instead focuses on pretraining a task-irrelevant, action-free world model within the source domains. We present Vid2Act, a model-based RL method that learns to transfer valuable action-conditioned dynamics and potentially useful action demonstrations from offline to online settings. The main idea is to use the world models not only as simulators for behavior learning but also as tools to measure the domain relevance for both dynamics representation transfer and policy transfer. Specifically, we train the world models to generate a set of time-varying task similarities using a domain-selective knowledge distillation loss. These similarities serve two purposes: (i) adaptively transferring the most useful source knowledge to facilitate dynamics learning, and (ii) learning to replay the most relevant source actions to guide the target policy. We demonstrate the advantages of Vid2Act over the action-free visual RL pretraining method in both Meta-World and DeepMind Control Suite.
Look where you look! Saliency-guided Q-networks for generalization in visual Reinforcement Learning
Deep reinforcement learning policies, despite their outstanding efficiency in simulated visual control tasks, have shown disappointing ability to generalize across disturbances in the input training images. Changes in image statistics or distracting background elements are pitfalls that prevent generalization and real-world applicability of such control policies. We elaborate on the intuition that a good visual policy should be able to identify which pixels are important for its decision, and preserve this identification of important sources of information across images. This implies that training of a policy with small generalization gap should focus on such important pixels and ignore the others. This leads to the introduction of saliency-guided Q-networks (SGQN), a generic method for visual reinforcement learning, that is compatible with any value function learning method. SGQN vastly improves the generalization capability of Soft Actor-Critic agents and outperforms existing stateof-the-art methods on the Deepmind Control Generalization benchmark, setting a new reference in terms of training efficiency, generalization gap, and policy interpretability.
Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to regularize the value function. Existing model-free approaches, such as Soft Actor-Critic (SAC), are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based (Dreamer, PlaNet, and SLAC) methods and recently proposed contrastive learning (CURL). Our approach can be combined with any model-free reinforcement learning algorithm, requiring only minor modifications. An implementation can be found at https://sites.google.com/view/data-regularized-q.
Hypernetworks for Zero-shot Transfer in Reinforcement Learning
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objective and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation
While agents trained by Reinforcement Learning (RL) can solve increasingly challenging tasks directly from visual observations, generalizing learned skills to novel environments remains very challenging. Extensive use of data augmentation is a promising technique for improving generalization in RL, but it is often found to decrease sample efficiency and can even lead to divergence. In this paper, we investigate causes of instability when using data augmentation in common off-policy RL algorithms. We identify two problems, both rooted in high-variance Q-targets. Based on our findings, we propose a simple yet effective technique for stabilizing this class of algorithms under augmentation. We perform extensive empirical evaluation of image-based RL using both ConvNets and Vision Transformers (ViT) on a family of benchmarks based on DeepMind Control Suite, as well as in robotic manipulation tasks. Our method greatly improves stability and sample efficiency of ConvNets under augmentation, and achieves generalization results competitive with state-of-the-art methods for image-based RL in environments with unseen visuals. We further show that our method scales to RL with ViT-based architectures, and that data augmentation may be especially important in this setting.
Value-Based Deep RL Scales Predictably
Scaling data and compute is critical to the success of machine learning. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling behavior is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
Skill Expansion and Composition in Parameter Space
Humans excel at reusing prior knowledge to address new challenges and developing skills while solving problems. This paradigm becomes increasingly popular in the development of autonomous agents, as it develops systems that can self-evolve in response to new challenges like human beings. However, previous methods suffer from limited training efficiency when expanding new skills and fail to fully leverage prior knowledge to facilitate new task learning. In this paper, we propose Parametric Skill Expansion and Composition (PSEC), a new framework designed to iteratively evolve the agents' capabilities and efficiently address new challenges by maintaining a manageable skill library. This library can progressively integrate skill primitives as plug-and-play Low-Rank Adaptation (LoRA) modules in parameter-efficient finetuning, facilitating efficient and flexible skill expansion. This structure also enables the direct skill compositions in parameter space by merging LoRA modules that encode different skills, leveraging shared information across skills to effectively program new skills. Based on this, we propose a context-aware module to dynamically activate different skills to collaboratively handle new tasks. Empowering diverse applications including multi-objective composition, dynamics shift, and continual policy shift, the results on D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC exhibits superior capacity to leverage prior knowledge to efficiently tackle new challenges, as well as expand its skill libraries to evolve the capabilities. Project website: https://ltlhuuu.github.io/PSEC/.
DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization
Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations.
TACO: Temporal Latent Action-Driven Contrastive Loss for Visual Reinforcement Learning
Despite recent progress in reinforcement learning (RL) from raw pixel data, sample inefficiency continues to present a substantial obstacle. Prior works have attempted to address this challenge by creating self-supervised auxiliary tasks, aiming to enrich the agent's learned representations with control-relevant information for future state prediction. However, these objectives are often insufficient to learn representations that can represent the optimal policy or value function, and they often consider tasks with small, abstract discrete action spaces and thus overlook the importance of action representation learning in continuous control. In this paper, we introduce TACO: Temporal Action-driven Contrastive Learning, a simple yet powerful temporal contrastive learning approach that facilitates the concurrent acquisition of latent state and action representations for agents. TACO simultaneously learns a state and an action representation by optimizing the mutual information between representations of current states paired with action sequences and representations of the corresponding future states. Theoretically, TACO can be shown to learn state and action representations that encompass sufficient information for control, thereby improving sample efficiency. For online RL, TACO achieves 40% performance boost after one million environment interaction steps on average across nine challenging visual continuous control tasks from Deepmind Control Suite. In addition, we show that TACO can also serve as a plug-and-play module adding to existing offline visual RL methods to establish the new state-of-the-art performance for offline visual RL across offline datasets with varying quality.
MAD-TD: Model-Augmented Data stabilizes High Update Ratio RL
Building deep reinforcement learning (RL) agents that find a good policy with few samples has proven notoriously challenging. To achieve sample efficiency, recent work has explored updating neural networks with large numbers of gradient steps for every new sample. While such high update-to-data (UTD) ratios have shown strong empirical performance, they also introduce instability to the training process. Previous approaches need to rely on periodic neural network parameter resets to address this instability, but restarting the training process is infeasible in many real-world applications and requires tuning the resetting interval. In this paper, we focus on one of the core difficulties of stable training with limited samples: the inability of learned value functions to generalize to unobserved on-policy actions. We mitigate this issue directly by augmenting the off-policy RL training process with a small amount of data generated from a learned world model. Our method, Model-Augmented Data for TD Learning (MAD-TD), uses small amounts of generated data to stabilize high UTD training and achieve competitive performance on the most challenging tasks in the DeepMind control suite. Our experiments further highlight the importance of employing a good model to generate data, MAD-TD's ability to combat value overestimation, and its practical stability gains for continued learning.
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes
Discrete-action reinforcement learning algorithms often falter in tasks with high-dimensional discrete action spaces due to the vast number of possible actions. A recent advancement leverages value-decomposition, a concept from multi-agent reinforcement learning, to tackle this challenge. This study delves deep into the effects of this value-decomposition, revealing that whilst it curtails the over-estimation bias inherent to Q-learning algorithms, it amplifies target variance. To counteract this, we present an ensemble of critics to mitigate target variance. Moreover, we introduce a regularisation loss that helps to mitigate the effects that exploratory actions in one dimension can have on the value of optimal actions in other dimensions. Our novel algorithm, REValueD, tested on discretised versions of the DeepMind Control Suite tasks, showcases superior performance, especially in the challenging humanoid and dog tasks. We further dissect the factors influencing REValueD's performance, evaluating the significance of the regularisation loss and the scalability of REValueD with increasing sub-actions per dimension.
DreamSmooth: Improving Model-based Reinforcement Learning via Reward Smoothing
Model-based reinforcement learning (MBRL) has gained much attention for its ability to learn complex behaviors in a sample-efficient way: planning actions by generating imaginary trajectories with predicted rewards. Despite its success, we found that surprisingly, reward prediction is often a bottleneck of MBRL, especially for sparse rewards that are challenging (or even ambiguous) to predict. Motivated by the intuition that humans can learn from rough reward estimates, we propose a simple yet effective reward smoothing approach, DreamSmooth, which learns to predict a temporally-smoothed reward, instead of the exact reward at the given timestep. We empirically show that DreamSmooth achieves state-of-the-art performance on long-horizon sparse-reward tasks both in sample efficiency and final performance without losing performance on common benchmarks, such as Deepmind Control Suite and Atari benchmarks.
PARL: A Unified Framework for Policy Alignment in Reinforcement Learning
We present a novel unified bilevel optimization-based framework, PARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named A-PARL to solve PARL problem, establishing sample complexity bounds of order O(1/T). Our empirical results substantiate that the proposed PARL can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks.
Simplified Temporal Consistency Reinforcement Learning
Reinforcement learning is able to solve complex sequential decision-making tasks but is currently limited by sample efficiency and required computation. To improve sample efficiency, recent work focuses on model-based RL which interleaves model learning with planning. Recent methods further utilize policy learning, value estimation, and, self-supervised learning as auxiliary objectives. In this paper we show that, surprisingly, a simple representation learning approach relying only on a latent dynamics model trained by latent temporal consistency is sufficient for high-performance RL. This applies when using pure planning with a dynamics model conditioned on the representation, but, also when utilizing the representation as policy and value function features in model-free RL. In experiments, our approach learns an accurate dynamics model to solve challenging high-dimensional locomotion tasks with online planners while being 4.1 times faster to train compared to ensemble-based methods. With model-free RL without planning, especially on high-dimensional tasks, such as the DeepMind Control Suite Humanoid and Dog tasks, our approach outperforms model-free methods by a large margin and matches model-based methods' sample efficiency while training 2.4 times faster.
Automatic Intrinsic Reward Shaping for Exploration in Deep Reinforcement Learning
We present AIRS: Automatic Intrinsic Reward Shaping that intelligently and adaptively provides high-quality intrinsic rewards to enhance exploration in reinforcement learning (RL). More specifically, AIRS selects shaping function from a predefined set based on the estimated task return in real-time, providing reliable exploration incentives and alleviating the biased objective problem. Moreover, we develop an intrinsic reward toolkit to provide efficient and reliable implementations of diverse intrinsic reward approaches. We test AIRS on various tasks of MiniGrid, Procgen, and DeepMind Control Suite. Extensive simulation demonstrates that AIRS can outperform the benchmarking schemes and achieve superior performance with simple architecture.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
MuDreamer: Learning Predictive World Models without Reconstruction
The DreamerV3 agent recently demonstrated state-of-the-art performance in diverse domains, learning powerful world models in latent space using a pixel reconstruction loss. However, while the reconstruction loss is essential to Dreamer's performance, it also necessitates modeling unnecessary information. Consequently, Dreamer sometimes fails to perceive crucial elements which are necessary for task-solving when visual distractions are present in the observation, significantly limiting its potential. In this paper, we present MuDreamer, a robust reinforcement learning agent that builds upon the DreamerV3 algorithm by learning a predictive world model without the need for reconstructing input signals. Rather than relying on pixel reconstruction, hidden representations are instead learned by predicting the environment value function and previously selected actions. Similar to predictive self-supervised methods for images, we find that the use of batch normalization is crucial to prevent learning collapse. We also study the effect of KL balancing between model posterior and prior losses on convergence speed and learning stability. We evaluate MuDreamer on the commonly used DeepMind Visual Control Suite and demonstrate stronger robustness to visual distractions compared to DreamerV3 and other reconstruction-free approaches, replacing the environment background with task-irrelevant real-world videos. Our method also achieves comparable performance on the Atari100k benchmark while benefiting from faster training.
Scalable In-context Ranking with Generative Models
In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that FLARE Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR.
What Are You Doing? A Closer Look at Controllable Human Video Generation
High-quality benchmarks are crucial for driving progress in machine learning research. However, despite the growing interest in video generation, there is no comprehensive dataset to evaluate human generation. Humans can perform a wide variety of actions and interactions, but existing datasets, like TikTok and TED-Talks, lack the diversity and complexity to fully capture the capabilities of video generation models. We close this gap by introducing `What Are You Doing?' (WYD): a new benchmark for fine-grained evaluation of controllable image-to-video generation of humans. WYD consists of 1{,}544 captioned videos that have been meticulously collected and annotated with 56 fine-grained categories. These allow us to systematically measure performance across 9 aspects of human generation, including actions, interactions and motion. We also propose and validate automatic metrics that leverage our annotations and better capture human evaluations. Equipped with our dataset and metrics, we perform in-depth analyses of seven state-of-the-art models in controllable image-to-video generation, showing how WYD provides novel insights about the capabilities of these models. We release our data and code to drive forward progress in human video generation modeling at https://github.com/google-deepmind/wyd-benchmark.
Generative AI-based closed-loop fMRI system
While generative AI is now widespread and useful in society, there are potential risks of misuse, e.g., unconsciously influencing cognitive processes or decision-making. Although this causes a security problem in the cognitive domain, there has been no research about neural and computational mechanisms counteracting the impact of malicious generative AI in humans. We propose DecNefGAN, a novel framework that combines a generative adversarial system and a neural reinforcement model. More specifically, DecNefGAN bridges human and generative AI in a closed-loop system, with the AI creating stimuli that induce specific mental states, thus exerting external control over neural activity. The objective of the human is the opposite, to compete and reach an orthogonal mental state. This framework can contribute to elucidating how the human brain responds to and counteracts the potential influence of generative AI.
Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).
Reward Reports for Reinforcement Learning
Building systems that are good for society in the face of complex societal effects requires a dynamic approach. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning has shown that the effects of feedback and optimization objectives on system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed and iteratively updated learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we discuss a concrete example: Meta's BlenderBot 3 chatbot. Several others for game-playing (DeepMind's MuZero), content recommendation (MovieLens), and traffic control (Project Flow) are included in the appendix.
DeepMind Lab
DeepMind Lab is a first-person 3D game platform designed for research and development of general artificial intelligence and machine learning systems. DeepMind Lab can be used to study how autonomous artificial agents may learn complex tasks in large, partially observed, and visually diverse worlds. DeepMind Lab has a simple and flexible API enabling creative task-designs and novel AI-designs to be explored and quickly iterated upon. It is powered by a fast and widely recognised game engine, and tailored for effective use by the research community.
Cross-Episodic Curriculum for Transformer Agents
We present a new algorithm, Cross-Episodic Curriculum (CEC), to boost the learning efficiency and generalization of Transformer agents. Central to CEC is the placement of cross-episodic experiences into a Transformer's context, which forms the basis of a curriculum. By sequentially structuring online learning trials and mixed-quality demonstrations, CEC constructs curricula that encapsulate learning progression and proficiency increase across episodes. Such synergy combined with the potent pattern recognition capabilities of Transformer models delivers a powerful cross-episodic attention mechanism. The effectiveness of CEC is demonstrated under two representative scenarios: one involving multi-task reinforcement learning with discrete control, such as in DeepMind Lab, where the curriculum captures the learning progression in both individual and progressively complex settings; and the other involving imitation learning with mixed-quality data for continuous control, as seen in RoboMimic, where the curriculum captures the improvement in demonstrators' expertise. In all instances, policies resulting from CEC exhibit superior performance and strong generalization. Code is open-sourced at https://cec-agent.github.io/ to facilitate research on Transformer agent learning.
Regularized Behavior Value Estimation
Offline reinforcement learning restricts the learning process to rely only on logged-data without access to an environment. While this enables real-world applications, it also poses unique challenges. One important challenge is dealing with errors caused by the overestimation of values for state-action pairs not well-covered by the training data. Due to bootstrapping, these errors get amplified during training and can lead to divergence, thereby crippling learning. To overcome this challenge, we introduce Regularized Behavior Value Estimation (R-BVE). Unlike most approaches, which use policy improvement during training, R-BVE estimates the value of the behavior policy during training and only performs policy improvement at deployment time. Further, R-BVE uses a ranking regularisation term that favours actions in the dataset that lead to successful outcomes. We provide ample empirical evidence of R-BVE's effectiveness, including state-of-the-art performance on the RL Unplugged ATARI dataset. We also test R-BVE on new datasets, from bsuite and a challenging DeepMind Lab task, and show that R-BVE outperforms other state-of-the-art discrete control offline RL methods.
ResearStudio: A Human-Intervenable Framework for Building Controllable Deep-Research Agents
Current deep-research agents run in a ''fire-and-forget'' mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner-Executor writes every step to a live ''plan-as-document,'' a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume -- switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI's DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. The full code, protocol, and evaluation scripts are available at https://github.com/ResearAI/ResearStudio. We will continue to update the repository to encourage further work on safe and controllable research agents. Our live demo is publicly accessible at http://ai-researcher.net:3000/. We support the development of DeepScientist, which can be accessed at https://github.com/ResearAI/DeepScientist.
Language Models Are Capable of Metacognitive Monitoring and Control of Their Internal Activations
Large language models (LLMs) can sometimes report the strategies they actually use to solve tasks, but they can also fail to do so. This suggests some degree of metacognition -- the capacity to monitor one's own cognitive processes for subsequent reporting and self-control. Metacognitive abilities enhance AI capabilities but raise safety concerns, as models might obscure their internal processes to evade neural-activation-based oversight mechanisms designed to detect harmful behaviors. Given society's increased reliance on these models, it is critical that we understand the limits of their metacognitive abilities, particularly their ability to monitor their internal activations. To address this, we introduce a neuroscience-inspired neurofeedback paradigm designed to quantify the ability of LLMs to explicitly report and control their activation patterns. By presenting models with sentence-label pairs where labels correspond to sentence-elicited internal activations along specific directions in the neural representation space, we demonstrate that LLMs can learn to report and control these activations. The performance varies with several factors: the number of example pairs provided, the semantic interpretability of the target neural direction, and the variance explained by that direction. These results reveal a "metacognitive space" with dimensionality much lower than the model's neural space, suggesting LLMs can monitor only a subset of their neural mechanisms. Our findings provide empirical evidence quantifying metacognitive capabilities in LLMs, with significant implications for AI safety.
DeepPsy-Agent: A Stage-Aware and Deep-Thinking Emotional Support Agent System
This paper introduces DeepPsy-Agent, an innovative psychological support system that combines the three-stage helping theory in psychology with deep learning techniques. The system consists of two core components: (1) a multi-stage response-capable dialogue model (deeppsy-chat), which enhances reasoning capabilities through stage-awareness and deep-thinking analysis to generate high-quality responses; and (2) a real-time stage transition detection model that identifies contextual shifts to guide the dialogue towards more effective intervention stages. Based on 30,000 real psychological hotline conversations, we employ AI-simulated dialogues and expert re-annotation strategies to construct a high-quality multi-turn dialogue dataset. Experimental results demonstrate that DeepPsy-Agent outperforms general-purpose large language models (LLMs) in key metrics such as problem exposure completeness, cognitive restructuring success rate, and action adoption rate. Ablation studies further validate the effectiveness of stage-awareness and deep-thinking modules, showing that stage information contributes 42.3\% to performance, while the deep-thinking module increases root-cause identification by 58.3\% and reduces ineffective suggestions by 72.1\%. This system addresses critical challenges in AI-based psychological support through dynamic dialogue management and deep reasoning, advancing intelligent mental health services.
Playing Atari with Deep Reinforcement Learning
We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
Thinking Sparks!: Emergent Attention Heads in Reasoning Models During Post Training
The remarkable capabilities of modern large reasoning models are largely unlocked through post-training techniques such as supervised fine-tuning and reinforcement learning. However, the architectural mechanisms behind such improvements remain largely opaque. In this work, we use circuit analysis to demonstrate that post-training for complex reasoning sparks the emergence of novel, functionally specialized attention heads. These heads collectively support structured reasoning and computation. Our comparative analysis across Qwen families and DeepSeek-distilled model reveals that these emergent heads evolve differently under different training regimes. Distillation and SFT foster a cumulative addition of stable reasoning heads. In contrast, group relative policy optimization operates in a dynamic search mode: relatively few attention heads are iteratively activated, evaluated, and pruned, with their survival closely tracking fluctuations in the task reward signal. Furthermore, we find that controllable think on/off models do not possess dedicated thinking heads. Instead, turning off explicit reasoning triggers a broader-but less efficient-set of compensatory heads. Through ablation and qualitative analyses, we connect these circuit-level dynamics to a crucial performance trade-off: strengthened heads enable sophisticated problem-solving strategies for difficult problems but can also introduce over-thinking failure modes, such as calculation errors or logical loops on simpler tasks. These findings connect circuit-level dynamics to macro-level performance, identifying an inherent tension where complex reasoning comes at the cost of elementary computations. More broadly, our work points to future directions for training policy design, emphasizing the need to balance the development of effective reasoning strategies with the assurance of reliable, flawless execution.
Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller
We propose Self-Control, a novel method utilizing suffix gradients to control the behavior of large language models (LLMs) without explicit human annotations. Given a guideline expressed in suffix string and the model's self-assessment of adherence, Self-Control computes the gradient of this self-judgment concerning the model's hidden states, directly influencing the auto-regressive generation process towards desired behaviors. To enhance efficiency, we introduce Self-Control_{prefix}, a compact module that encapsulates the learned representations from suffix gradients into a Prefix Controller, facilitating inference-time control for various LLM behaviors. Our experiments demonstrate Self-Control's efficacy across multiple domains, including emotional modulation, ensuring harmlessness, and enhancing complex reasoning. Especially, Self-Control_{prefix} enables a plug-and-play control and jointly controls multiple attributes, improving model outputs without altering model parameters or increasing inference-time costs.
Adding Conditional Control to Text-to-Image Diffusion Models
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.
RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for Intuitive Responsiveness and High-Accuracy Motor Imagery Classification
Current approaches to prosthetic control are limited by their reliance on traditional methods, which lack real-time adaptability and intuitive responsiveness. These limitations are particularly pronounced in assistive technologies designed for individuals with diverse cognitive states and motor intentions. In this paper, we introduce a framework that leverages Reinforcement Learning (RL) with Deep Q-Networks (DQN) for classification tasks. Additionally, we present a preprocessing technique using the Common Spatial Pattern (CSP) for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner. The subsequent 'csp space' transformation retains the temporal dimension of EEG signals, crucial for extracting discriminative features. The integration of DQN with a 1D-CNN-LSTM architecture optimizes the decision-making process in real-time, thereby enhancing the system's adaptability to the user's evolving needs and intentions. We elaborate on the data processing methods for two EEG motor imagery datasets. Our innovative model, RLEEGNet, incorporates a 1D-CNN-LSTM architecture as the Online Q-Network within the DQN, facilitating continuous adaptation and optimization of control strategies through feedback. This mechanism allows the system to learn optimal actions through trial and error, progressively improving its performance. RLEEGNet demonstrates high accuracy in classifying MI-EEG signals, achieving as high as 100% accuracy in MI tasks across both the GigaScience (3-class) and BCI-IV-2a (4-class) datasets. These results highlight the potential of combining DQN with a 1D-CNN-LSTM architecture to significantly enhance the adaptability and responsiveness of BCI systems.
SwarmBrain: Embodied agent for real-time strategy game StarCraft II via large language models
Large language models (LLMs) have recently garnered significant accomplishments in various exploratory tasks, even surpassing the performance of traditional reinforcement learning-based methods that have historically dominated the agent-based field. The purpose of this paper is to investigate the efficacy of LLMs in executing real-time strategy war tasks within the StarCraft II gaming environment. In this paper, we introduce SwarmBrain, an embodied agent leveraging LLM for real-time strategy implementation in the StarCraft II game environment. The SwarmBrain comprises two key components: 1) a Overmind Intelligence Matrix, powered by state-of-the-art LLMs, is designed to orchestrate macro-level strategies from a high-level perspective. This matrix emulates the overarching consciousness of the Zerg intelligence brain, synthesizing strategic foresight with the aim of allocating resources, directing expansion, and coordinating multi-pronged assaults. 2) a Swarm ReflexNet, which is agile counterpart to the calculated deliberation of the Overmind Intelligence Matrix. Due to the inherent latency in LLM reasoning, the Swarm ReflexNet employs a condition-response state machine framework, enabling expedited tactical responses for fundamental Zerg unit maneuvers. In the experimental setup, SwarmBrain is in control of the Zerg race in confrontation with an Computer-controlled Terran adversary. Experimental results show the capacity of SwarmBrain to conduct economic augmentation, territorial expansion, and tactical formulation, and it shows the SwarmBrain is capable of achieving victory against Computer players set at different difficulty levels.
Thought Purity: Defense Paradigm For Chain-of-Thought Attack
While reinforcement learning-trained Large Reasoning Models (LRMs, e.g., Deepseek-R1) demonstrate advanced reasoning capabilities in the evolving Large Language Models (LLMs) domain, their susceptibility to security threats remains a critical vulnerability. This weakness is particularly evident in Chain-of-Thought (CoT) generation processes, where adversarial methods like backdoor prompt attacks can systematically subvert the model's core reasoning mechanisms. The emerging Chain-of-Thought Attack (CoTA) reveals this vulnerability through exploiting prompt controllability, simultaneously degrading both CoT safety and task performance with low-cost interventions. To address this compounded security-performance vulnerability, we propose Thought Purity (TP): a defense paradigm that systematically strengthens resistance to malicious content while preserving operational efficacy. Our solution achieves this through three synergistic components: (1) a safety-optimized data processing pipeline (2) reinforcement learning-enhanced rule constraints (3) adaptive monitoring metrics. Our approach establishes the first comprehensive defense mechanism against CoTA vulnerabilities in reinforcement learning-aligned reasoning systems, significantly advancing the security-functionality equilibrium for next-generation AI architectures.
GAN-Control: Explicitly Controllable GANs
We present a framework for training GANs with explicit control over generated images. We are able to control the generated image by settings exact attributes such as age, pose, expression, etc. Most approaches for editing GAN-generated images achieve partial control by leveraging the latent space disentanglement properties, obtained implicitly after standard GAN training. Such methods are able to change the relative intensity of certain attributes, but not explicitly set their values. Recently proposed methods, designed for explicit control over human faces, harness morphable 3D face models to allow fine-grained control capabilities in GANs. Unlike these methods, our control is not constrained to morphable 3D face model parameters and is extendable beyond the domain of human faces. Using contrastive learning, we obtain GANs with an explicitly disentangled latent space. This disentanglement is utilized to train control-encoders mapping human-interpretable inputs to suitable latent vectors, thus allowing explicit control. In the domain of human faces we demonstrate control over identity, age, pose, expression, hair color and illumination. We also demonstrate control capabilities of our framework in the domains of painted portraits and dog image generation. We demonstrate that our approach achieves state-of-the-art performance both qualitatively and quantitatively.
Controllable Mind Visual Diffusion Model
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models. Although diffusion models have shown promise in analyzing functional magnetic resonance imaging (fMRI) data, including reconstructing high-quality images consistent with original visual stimuli, their accuracy in extracting semantic and silhouette information from brain signals remains limited. In this regard, we propose a novel approach, referred to as Controllable Mind Visual Diffusion Model (CMVDM). CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks. Additionally, a residual block is incorporated to capture information beyond semantic and silhouette features. We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette. Through extensive experimentation, we demonstrate that CMVDM outperforms existing state-of-the-art methods both qualitatively and quantitatively.
Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.
Deep Think with Confidence
Large Language Models (LLMs) have shown great potential in reasoning tasks through test-time scaling methods like self-consistency with majority voting. However, this approach often leads to diminishing returns in accuracy and high computational overhead. To address these challenges, we introduce Deep Think with Confidence (DeepConf), a simple yet powerful method that enhances both reasoning efficiency and performance at test time. DeepConf leverages model-internal confidence signals to dynamically filter out low-quality reasoning traces during or after generation. It requires no additional model training or hyperparameter tuning and can be seamlessly integrated into existing serving frameworks. We evaluate DeepConf across a variety of reasoning tasks and the latest open-source models, including Qwen 3 and GPT-OSS series. Notably, on challenging benchmarks such as AIME 2025, DeepConf@512 achieves up to 99.9% accuracy and reduces generated tokens by up to 84.7% compared to full parallel thinking.
Understanding and Diagnosing Deep Reinforcement Learning
Deep neural policies have recently been installed in a diverse range of settings, from biotechnology to automated financial systems. However, the utilization of deep neural networks to approximate the value function leads to concerns on the decision boundary stability, in particular, with regard to the sensitivity of policy decision making to indiscernible, non-robust features due to highly non-convex and complex deep neural manifolds. These concerns constitute an obstruction to understanding the reasoning made by deep neural policies, and their foundational limitations. Hence, it is crucial to develop techniques that aim to understand the sensitivities in the learnt representations of neural network policies. To achieve this we introduce a theoretically founded method that provides a systematic analysis of the unstable directions in the deep neural policy decision boundary across both time and space. Through experiments in the Arcade Learning Environment (ALE), we demonstrate the effectiveness of our technique for identifying correlated directions of instability, and for measuring how sample shifts remold the set of sensitive directions in the neural policy landscape. Most importantly, we demonstrate that state-of-the-art robust training techniques yield learning of disjoint unstable directions, with dramatically larger oscillations over time, when compared to standard training. We believe our results reveal the fundamental properties of the decision process made by reinforcement learning policies, and can help in constructing reliable and robust deep neural policies.
Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs
Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.
BoT: Breaking Long Thought Processes of o1-like Large Language Models through Backdoor Attack
Longer thought, better performance: large language models with deep reasoning capabilities, particularly o1-like models, have demonstrated remarkable performance by generating extensive thought processes during inference. This trade-off reveals a potential vulnerability: adversaries could compromise model performance by forcing immediate responses without thought processes. To this end, in this paper, we introduce a novel attack scenario targeting the long thought processes of o1-like models and propose BoT (Break CoT), which can selectively break intrinsic reasoning mechanisms through backdoor attacks. BoT constructs poisoned datasets with designed triggers and injects backdoor by either supervised fine-tuning or direct preference optimization. When triggered, the model directly generates answers without thought processes, while maintaining normal reasoning capabilities for clean inputs. Extensive experiments on open-source o1-like models, including recent DeepSeek-R1, demonstrate that BoT nearly achieves high attack success rates while maintaining clean accuracy, highlighting the critical safety risk in current models. Furthermore, the relationship between task difficulty and helpfulness reveals a potential application for good, enabling users to customize model behavior based on task complexity. Code is available at https://github.com/zihao-ai/BoT{https://github.com/zihao-ai/BoT}.
Autonomous Deep Agent
This technical brief introduces Deep Agent, an advanced autonomous AI system designed to manage complex multi-phase tasks through a novel hierarchical task management architecture. The system's foundation is built on our Hierarchical Task DAG (HTDAG) framework, which dynamically decomposes high-level objectives into manageable sub-tasks while rigorously maintaining dependencies and execution coherence. Deep Agent advances beyond traditional agent systems through three key innovations: First, it implements a recursive two-stage planner-executor architecture that enables continuous task refinement and adaptation as circumstances change. Second, it features an Autonomous API & Tool Creation (AATC) system that automatically generates reusable components from UI interactions, substantially reducing operational costs for similar tasks. Third, it incorporates Prompt Tweaking Engine and Autonomous Prompt Feedback Learning components that optimize Large Language Model prompts for specific scenarios, enhancing both inference accuracy and operational stability. These components are integrated to form a service infrastructure that manages user contexts, handles complex task dependencies, and orchestrates end-to-end agentic workflow execution. Through this sophisticated architecture, Deep Agent establishes a novel paradigm in self-governing AI systems, demonstrating robust capability to independently handle intricate, multi-step tasks while maintaining consistent efficiency and reliability through continuous self-optimization.
Effective Reward Specification in Deep Reinforcement Learning
In the last decade, Deep Reinforcement Learning has evolved into a powerful tool for complex sequential decision-making problems. It combines deep learning's proficiency in processing rich input signals with reinforcement learning's adaptability across diverse control tasks. At its core, an RL agent seeks to maximize its cumulative reward, enabling AI algorithms to uncover novel solutions previously unknown to experts. However, this focus on reward maximization also introduces a significant difficulty: improper reward specification can result in unexpected, misaligned agent behavior and inefficient learning. The complexity of accurately specifying the reward function is further amplified by the sequential nature of the task, the sparsity of learning signals, and the multifaceted aspects of the desired behavior. In this thesis, we survey the literature on effective reward specification strategies, identify core challenges relating to each of these approaches, and propose original contributions addressing the issue of sample efficiency and alignment in deep reinforcement learning. Reward specification represents one of the most challenging aspects of applying reinforcement learning in real-world domains. Our work underscores the absence of a universal solution to this complex and nuanced challenge; solving it requires selecting the most appropriate tools for the specific requirements of each unique application.
SelfIE: Self-Interpretation of Large Language Model Embeddings
How do large language models (LLMs) obtain their answers? The ability to explain and control an LLM's reasoning process is key for reliability, transparency, and future model developments. We propose SelfIE (Self-Interpretation of Embeddings), a framework that enables LLMs to interpret their own embeddings in natural language by leveraging their ability to respond inquiry about a given passage. Capable of interpreting open-world concepts in the hidden embeddings, SelfIE reveals LLM internal reasoning in cases such as making ethical decisions, internalizing prompt injection, and recalling harmful knowledge. SelfIE's text descriptions on hidden embeddings also open up new avenues to control LLM reasoning. We propose Supervised Control, which allows editing open-ended concepts while only requiring gradient computation of individual layer. We extend RLHF to hidden embeddings and propose Reinforcement Control that erases harmful knowledge in LLM without supervision targets.
Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models
Multi-agent reinforcement learning (MARL) methods struggle with the non-stationarity of multi-agent systems and fail to adaptively learn online when tested with novel agents. Here, we leverage large language models (LLMs) to create an autonomous agent that can handle these challenges. Our agent, Hypothetical Minds, consists of a cognitively-inspired architecture, featuring modular components for perception, memory, and hierarchical planning over two levels of abstraction. We introduce the Theory of Mind module that scaffolds the high-level planning process by generating hypotheses about other agents' strategies in natural language. It then evaluates and iteratively refines these hypotheses by reinforcing hypotheses that make correct predictions about the other agents' behavior. Hypothetical Minds significantly improves performance over previous LLM-agent and RL baselines on a range of competitive, mixed motive, and collaborative domains in the Melting Pot benchmark, including both dyadic and population-based environments. Additionally, comparisons against LLM-agent baselines and ablations reveal the importance of hypothesis evaluation and refinement for succeeding on complex scenarios.
Cost-Based Goal Recognition Meets Deep Learning
The ability to observe the effects of actions performed by others and to infer their intent, most likely goals, or course of action, is known as a plan or intention recognition cognitive capability and has long been one of the fundamental research challenges in AI. Deep learning has recently been making significant inroads on various pattern recognition problems, except for intention recognition. While extensively explored since the seventies, the problem remains unsolved for most interesting cases in various areas, ranging from natural language understanding to human behavior understanding based on video feeds. This paper compares symbolic inverse planning, one of the most investigated approaches to goal recognition, to deep learning using CNN and LTSM neural network architectures, on five synthetic benchmarks often used in the literature. The results show that the deep learning approach achieves better goal-prediction accuracy and timeliness than the symbolic cost-based plan recognizer in these domains. Although preliminary, these results point to interesting future research avenues.
DNNs May Determine Major Properties of Their Outputs Early, with Timing Possibly Driven by Bias
This paper argues that deep neural networks (DNNs) mostly determine their outputs during the early stages of inference, where biases inherent in the model play a crucial role in shaping this process. We draw a parallel between this phenomenon and human decision-making, which often relies on fast, intuitive heuristics. Using diffusion models (DMs) as a case study, we demonstrate that DNNs often make early-stage decision-making influenced by the type and extent of bias in their design and training. Our findings offer a new perspective on bias mitigation, efficient inference, and the interpretation of machine learning systems. By identifying the temporal dynamics of decision-making in DNNs, this paper aims to inspire further discussion and research within the machine learning community.
Reinforcement Learning Foundations for Deep Research Systems: A Survey
Deep research systems, agentic AI that solve complex, multi-step tasks by coordinating reasoning, search across the open web and user files, and tool use, are moving toward hierarchical deployments with a Planner, Coordinator, and Executors. In practice, training entire stacks end-to-end remains impractical, so most work trains a single planner connected to core tools such as search, browsing, and code. While SFT imparts protocol fidelity, it suffers from imitation and exposure biases and underuses environment feedback. Preference alignment methods such as DPO are schema and proxy-dependent, off-policy, and weak for long-horizon credit assignment and multi-objective trade-offs. A further limitation of SFT and DPO is their reliance on human defined decision points and subskills through schema design and labeled comparisons. Reinforcement learning aligns with closed-loop, tool-interaction research by optimizing trajectory-level policies, enabling exploration, recovery behaviors, and principled credit assignment, and it reduces dependence on such human priors and rater biases. This survey is, to our knowledge, the first dedicated to the RL foundations of deep research systems. It systematizes work after DeepSeek-R1 along three axes: (i) data synthesis and curation; (ii) RL methods for agentic research covering stability, sample efficiency, long context handling, reward and credit design, multi-objective optimization, and multimodal integration; and (iii) agentic RL training systems and frameworks. We also cover agent architecture and coordination, as well as evaluation and benchmarks, including recent QA, VQA, long-form synthesis, and domain-grounded, tool-interaction tasks. We distill recurring patterns, surface infrastructure bottlenecks, and offer practical guidance for training robust, transparent deep research agents with RL.
Conscious Gaze: Adaptive Attention Mechanisms for Hallucination Mitigation in Vision-Language Models
Large Vision-Language Models (VLMs) often exhibit text inertia, where attention drifts from visual evidence toward linguistic priors, resulting in object hallucinations. Existing decoding strategies intervene only at the output logits and thus cannot correct internal reasoning drift, while recent internal-control methods based on heuristic head suppression or global steering vectors lack principled grounding. We introduce Conscious Gaze (CG-VLM), a training-free, inference-time framework that converts game-theoretic interpretability into actionable decoding control. A Cognitive Demand Sensor built on Harsanyi interactions estimates instantaneous vision-text synergy and identifies moments when visual grounding is necessary. Conditioned on this signal, a Focused Consensus Induction module selectively reorients mid-layer attention toward visual tokens before collapse into text priors. CG-VLM achieves state-of-the-art results on POPE and CHAIR across InstructBLIP, LLaVA, Qwen-VL, and mPLUG, while preserving general capabilities, demonstrating that token-level sensing enables precise, context-aware intervention without compromising foundational knowledge.
ControlNet-XS: Designing an Efficient and Effective Architecture for Controlling Text-to-Image Diffusion Models
The field of image synthesis has made tremendous strides forward in the last years. Besides defining the desired output image with text-prompts, an intuitive approach is to additionally use spatial guidance in form of an image, such as a depth map. For this, a recent and highly popular approach is to use a controlling network, such as ControlNet, in combination with a pre-trained image generation model, such as Stable Diffusion. When evaluating the design of existing controlling networks, we observe that they all suffer from the same problem of a delay in information flowing between the generation and controlling process. This, in turn, means that the controlling network must have generative capabilities. In this work we propose a new controlling architecture, called ControlNet-XS, which does not suffer from this problem, and hence can focus on the given task of learning to control. In contrast to ControlNet, our model needs only a fraction of parameters, and hence is about twice as fast during inference and training time. Furthermore, the generated images are of higher quality and the control is of higher fidelity. All code and pre-trained models will be made publicly available.
From Imitation to Introspection: Probing Self-Consciousness in Language Models
Self-consciousness, the introspection of one's existence and thoughts, represents a high-level cognitive process. As language models advance at an unprecedented pace, a critical question arises: Are these models becoming self-conscious? Drawing upon insights from psychological and neural science, this work presents a practical definition of self-consciousness for language models and refines ten core concepts. Our work pioneers an investigation into self-consciousness in language models by, for the first time, leveraging causal structural games to establish the functional definitions of the ten core concepts. Based on our definitions, we conduct a comprehensive four-stage experiment: quantification (evaluation of ten leading models), representation (visualization of self-consciousness within the models), manipulation (modification of the models' representation), and acquisition (fine-tuning the models on core concepts). Our findings indicate that although models are in the early stages of developing self-consciousness, there is a discernible representation of certain concepts within their internal mechanisms. However, these representations of self-consciousness are hard to manipulate positively at the current stage, yet they can be acquired through targeted fine-tuning. Our datasets and code are at https://github.com/OpenCausaLab/SelfConsciousness.
Benchmarking Mental State Representations in Language Models
While numerous works have assessed the generative performance of language models (LMs) on tasks requiring Theory of Mind reasoning, research into the models' internal representation of mental states remains limited. Recent work has used probing to demonstrate that LMs can represent beliefs of themselves and others. However, these claims are accompanied by limited evaluation, making it difficult to assess how mental state representations are affected by model design and training choices. We report an extensive benchmark with various LM types with different model sizes, fine-tuning approaches, and prompt designs to study the robustness of mental state representations and memorisation issues within the probes. Our results show that the quality of models' internal representations of the beliefs of others increases with model size and, more crucially, with fine-tuning. We are the first to study how prompt variations impact probing performance on theory of mind tasks. We demonstrate that models' representations are sensitive to prompt variations, even when such variations should be beneficial. Finally, we complement previous activation editing experiments on Theory of Mind tasks and show that it is possible to improve models' reasoning performance by steering their activations without the need to train any probe.
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
FlexControl: Computation-Aware ControlNet with Differentiable Router for Text-to-Image Generation
ControlNet offers a powerful way to guide diffusion-based generative models, yet most implementations rely on ad-hoc heuristics to choose which network blocks to control-an approach that varies unpredictably with different tasks. To address this gap, we propose FlexControl, a novel framework that copies all diffusion blocks during training and employs a trainable gating mechanism to dynamically select which blocks to activate at each denoising step. With introducing a computation-aware loss, we can encourage control blocks only to activate when it benefit the generation quality. By eliminating manual block selection, FlexControl enhances adaptability across diverse tasks and streamlines the design pipeline, with computation-aware training loss in an end-to-end training manner. Through comprehensive experiments on both UNet (e.g., SD1.5) and DiT (e.g., SD3.0), we show that our method outperforms existing ControlNet variants in certain key aspects of interest. As evidenced by both quantitative and qualitative evaluations, FlexControl preserves or enhances image fidelity while also reducing computational overhead by selectively activating the most relevant blocks. These results underscore the potential of a flexible, data-driven approach for controlled diffusion and open new avenues for efficient generative model design.
Do LLMs "Feel"? Emotion Circuits Discovery and Control
As the demand for emotional intelligence in large language models (LLMs) grows, a key challenge lies in understanding the internal mechanisms that give rise to emotional expression and in controlling emotions in generated text. This study addresses three core questions: (1) Do LLMs contain context-agnostic mechanisms shaping emotional expression? (2) What form do these mechanisms take? (3) Can they be harnessed for universal emotion control? We first construct a controlled dataset, SEV (Scenario-Event with Valence), to elicit comparable internal states across emotions. Subsequently, we extract context-agnostic emotion directions that reveal consistent, cross-context encoding of emotion (Q1). We identify neurons and attention heads that locally implement emotional computation through analytical decomposition and causal analysis, and validate their causal roles via ablation and enhancement interventions. Next, we quantify each sublayer's causal influence on the model's final emotion representation and integrate the identified local components into coherent global emotion circuits that drive emotional expression (Q2). Directly modulating these circuits achieves 99.65% emotion-expression accuracy on the test set, surpassing prompting- and steering-based methods (Q3). To our knowledge, this is the first systematic study to uncover and validate emotion circuits in LLMs, offering new insights into interpretability and controllable emotional intelligence.
Test-time Prompt Intervention
Test-time compute has led to remarkable success in the large language model (LLM) community, particularly for complex tasks, where longer chains of thought (CoTs) are generated to enhance reasoning capabilities. However, growing evidence reveals that such reasoning models often produce CoTs plagued by excessive redundancy, including unnecessary verification steps and repetitive reasoning shifts. The root cause lies in post-training of them that overly rely on outcome reward paradigms, as the data of process reward paradigms, which regulate intermediate reasoning steps, is difficult to construct at scale. To address this, we propose PI, a novel framework for Test-time Prompt Intervention. PI provides an interface to dynamically guide and regulate reasoning paths during inference through timely (When module) and proper (How module) interventions and post-intervention sampling (Which module). This allows human problem-solving expertise and cognitive science principles to be seamlessly integrated into LLMs' reasoning processes, enhancing controllability and interpretability. Extensive experiments across multiple models and datasets demonstrate that PI significantly shortens CoTs while reducing hallucination, yielding more concise and reliable reasoning.
Variational Quantum Soft Actor-Critic for Robotic Arm Control
Deep Reinforcement Learning is emerging as a promising approach for the continuous control task of robotic arm movement. However, the challenges of learning robust and versatile control capabilities are still far from being resolved for real-world applications, mainly because of two common issues of this learning paradigm: the exploration strategy and the slow learning speed, sometimes known as "the curse of dimensionality". This work aims at exploring and assessing the advantages of the application of Quantum Computing to one of the state-of-art Reinforcement Learning techniques for continuous control - namely Soft Actor-Critic. Specifically, the performance of a Variational Quantum Soft Actor-Critic on the movement of a virtual robotic arm has been investigated by means of digital simulations of quantum circuits. A quantum advantage over the classical algorithm has been found in terms of a significant decrease in the amount of required parameters for satisfactory model training, paving the way for further promising developments.
Adversarial Manipulation of Reasoning Models using Internal Representations
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation
DeepAgent: A General Reasoning Agent with Scalable Toolsets
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
Countermind: A Multi-Layered Security Architecture for Large Language Models
The security of Large Language Model (LLM) applications is fundamentally challenged by "form-first" attacks like prompt injection and jailbreaking, where malicious instructions are embedded within user inputs. Conventional defenses, which rely on post hoc output filtering, are often brittle and fail to address the root cause: the model's inability to distinguish trusted instructions from untrusted data. This paper proposes Countermind, a multi-layered security architecture intended to shift defenses from a reactive, post hoc posture to a proactive, pre-inference, and intra-inference enforcement model. The architecture proposes a fortified perimeter designed to structurally validate and transform all inputs, and an internal governance mechanism intended to constrain the model's semantic processing pathways before an output is generated. The primary contributions of this work are conceptual designs for: (1) A Semantic Boundary Logic (SBL) with a mandatory, time-coupled Text Crypter intended to reduce the plaintext prompt injection attack surface, provided all ingestion paths are enforced. (2) A Parameter-Space Restriction (PSR) mechanism, leveraging principles from representation engineering, to dynamically control the LLM's access to internal semantic clusters, with the goal of mitigating semantic drift and dangerous emergent behaviors. (3) A Secure, Self-Regulating Core that uses an OODA loop and a learning security module to adapt its defenses based on an immutable audit log. (4) A Multimodal Input Sandbox and Context-Defense mechanisms to address threats from non-textual data and long-term semantic poisoning. This paper outlines an evaluation plan designed to quantify the proposed architecture's effectiveness in reducing the Attack Success Rate (ASR) for form-first attacks and to measure its potential latency overhead.
Contrastive Sparse Autoencoders for Interpreting Planning of Chess-Playing Agents
AI led chess systems to a superhuman level, yet these systems heavily rely on black-box algorithms. This is unsustainable in ensuring transparency to the end-user, particularly when these systems are responsible for sensitive decision-making. Recent interpretability work has shown that the inner representations of Deep Neural Networks (DNNs) were fathomable and contained human-understandable concepts. Yet, these methods are seldom contextualised and are often based on a single hidden state, which makes them unable to interpret multi-step reasoning, e.g. planning. In this respect, we propose contrastive sparse autoencoders (CSAE), a novel framework for studying pairs of game trajectories. Using CSAE, we are able to extract and interpret concepts that are meaningful to the chess-agent plans. We primarily focused on a qualitative analysis of the CSAE features before proposing an automated feature taxonomy. Furthermore, to evaluate the quality of our trained CSAE, we devise sanity checks to wave spurious correlations in our results.
HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
Recently, large reasoning models have demonstrated strong mathematical and coding abilities, and deep search leverages their reasoning capabilities in challenging information retrieval tasks. Existing deep search works are generally limited to a single knowledge source, either local or the Web. However, enterprises often require private deep search systems that can leverage search tools over both local and the Web corpus. Simply training an agent equipped with multiple search tools using flat reinforcement learning (RL) is a straightforward idea, but it has problems such as low training data efficiency and poor mastery of complex tools. To address the above issue, we propose a hierarchical agentic deep search framework, HierSearch, trained with hierarchical RL. At the low level, a local deep search agent and a Web deep search agent are trained to retrieve evidence from their corresponding domains. At the high level, a planner agent coordinates low-level agents and provides the final answer. Moreover, to prevent direct answer copying and error propagation, we design a knowledge refiner that filters out hallucinations and irrelevant evidence returned by low-level agents. Experiments show that HierSearch achieves better performance compared to flat RL, and outperforms various deep search and multi-source retrieval-augmented generation baselines in six benchmarks across general, finance, and medical domains.
Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces
While recent advances in deep reinforcement learning have allowed autonomous learning agents to succeed at a variety of complex tasks, existing algorithms generally require a lot of training data. One way to increase the speed at which agents are able to learn to perform tasks is by leveraging the input of human trainers. Although such input can take many forms, real-time, scalar-valued feedback is especially useful in situations where it proves difficult or impossible for humans to provide expert demonstrations. Previous approaches have shown the usefulness of human input provided in this fashion (e.g., the TAMER framework), but they have thus far not considered high-dimensional state spaces or employed the use of deep learning. In this paper, we do both: we propose Deep TAMER, an extension of the TAMER framework that leverages the representational power of deep neural networks in order to learn complex tasks in just a short amount of time with a human trainer. We demonstrate Deep TAMER's success by using it and just 15 minutes of human-provided feedback to train an agent that performs better than humans on the Atari game of Bowling - a task that has proven difficult for even state-of-the-art reinforcement learning methods.
FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition
Recent approaches such as ControlNet offer users fine-grained spatial control over text-to-image (T2I) diffusion models. However, auxiliary modules have to be trained for each type of spatial condition, model architecture, and checkpoint, putting them at odds with the diverse intents and preferences a human designer would like to convey to the AI models during the content creation process. In this work, we present FreeControl, a training-free approach for controllable T2I generation that supports multiple conditions, architectures, and checkpoints simultaneously. FreeControl designs structure guidance to facilitate the structure alignment with a guidance image, and appearance guidance to enable the appearance sharing between images generated using the same seed. Extensive qualitative and quantitative experiments demonstrate the superior performance of FreeControl across a variety of pre-trained T2I models. In particular, FreeControl facilitates convenient training-free control over many different architectures and checkpoints, allows the challenging input conditions on which most of the existing training-free methods fail, and achieves competitive synthesis quality with training-based approaches.
Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time
We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.
Thought Communication in Multiagent Collaboration
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
TC-LoRA: Temporally Modulated Conditional LoRA for Adaptive Diffusion Control
Current controllable diffusion models typically rely on fixed architectures that modify intermediate activations to inject guidance conditioned on a new modality. This approach uses a static conditioning strategy for a dynamic, multi-stage denoising process, limiting the model's ability to adapt its response as the generation evolves from coarse structure to fine detail. We introduce TC-LoRA (Temporally Modulated Conditional LoRA), a new paradigm that enables dynamic, context-aware control by conditioning the model's weights directly. Our framework uses a hypernetwork to generate LoRA adapters on-the-fly, tailoring weight modifications for the frozen backbone at each diffusion step based on time and the user's condition. This mechanism enables the model to learn and execute an explicit, adaptive strategy for applying conditional guidance throughout the entire generation process. Through experiments on various data domains, we demonstrate that this dynamic, parametric control significantly enhances generative fidelity and adherence to spatial conditions compared to static, activation-based methods. TC-LoRA establishes an alternative approach in which the model's conditioning strategy is modified through a deeper functional adaptation of its weights, allowing control to align with the dynamic demands of the task and generative stage.
Lessons from Defending Gemini Against Indirect Prompt Injections
Gemini is increasingly used to perform tasks on behalf of users, where function-calling and tool-use capabilities enable the model to access user data. Some tools, however, require access to untrusted data introducing risk. Adversaries can embed malicious instructions in untrusted data which cause the model to deviate from the user's expectations and mishandle their data or permissions. In this report, we set out Google DeepMind's approach to evaluating the adversarial robustness of Gemini models and describe the main lessons learned from the process. We test how Gemini performs against a sophisticated adversary through an adversarial evaluation framework, which deploys a suite of adaptive attack techniques to run continuously against past, current, and future versions of Gemini. We describe how these ongoing evaluations directly help make Gemini more resilient against manipulation.
LooseControl: Lifting ControlNet for Generalized Depth Conditioning
We present LooseControl to allow generalized depth conditioning for diffusion-based image generation. ControlNet, the SOTA for depth-conditioned image generation, produces remarkable results but relies on having access to detailed depth maps for guidance. Creating such exact depth maps, in many scenarios, is challenging. This paper introduces a generalized version of depth conditioning that enables many new content-creation workflows. Specifically, we allow (C1) scene boundary control for loosely specifying scenes with only boundary conditions, and (C2) 3D box control for specifying layout locations of the target objects rather than the exact shape and appearance of the objects. Using LooseControl, along with text guidance, users can create complex environments (e.g., rooms, street views, etc.) by specifying only scene boundaries and locations of primary objects. Further, we provide two editing mechanisms to refine the results: (E1) 3D box editing enables the user to refine images by changing, adding, or removing boxes while freezing the style of the image. This yields minimal changes apart from changes induced by the edited boxes. (E2) Attribute editing proposes possible editing directions to change one particular aspect of the scene, such as the overall object density or a particular object. Extensive tests and comparisons with baselines demonstrate the generality of our method. We believe that LooseControl can become an important design tool for easily creating complex environments and be extended to other forms of guidance channels. Code and more information are available at https://shariqfarooq123.github.io/loose-control/ .
Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models
Generating images from brain waves is gaining increasing attention due to its potential to advance brain-computer interface (BCI) systems by understanding how brain signals encode visual cues. Most of the literature has focused on fMRI-to-Image tasks as fMRI is characterized by high spatial resolution. However, fMRI is an expensive neuroimaging modality and does not allow for real-time BCI. On the other hand, electroencephalography (EEG) is a low-cost, non-invasive, and portable neuroimaging technique, making it an attractive option for future real-time applications. Nevertheless, EEG presents inherent challenges due to its low spatial resolution and susceptibility to noise and artifacts, which makes generating images from EEG more difficult. In this paper, we address these problems with a streamlined framework based on the ControlNet adapter for conditioning a latent diffusion model (LDM) through EEG signals. We conduct experiments and ablation studies on popular benchmarks to demonstrate that the proposed method beats other state-of-the-art models. Unlike these methods, which often require extensive preprocessing, pretraining, different losses, and captioning models, our approach is efficient and straightforward, requiring only minimal preprocessing and a few components. Code will be available after publication.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
Is Imitation All You Need? Generalized Decision-Making with Dual-Phase Training
We introduce DualMind, a generalist agent designed to tackle various decision-making tasks that addresses challenges posed by current methods, such as overfitting behaviors and dependence on task-specific fine-tuning. DualMind uses a novel "Dual-phase" training strategy that emulates how humans learn to act in the world. The model first learns fundamental common knowledge through a self-supervised objective tailored for control tasks and then learns how to make decisions based on different contexts through imitating behaviors conditioned on given prompts. DualMind can handle tasks across domains, scenes, and embodiments using just a single set of model weights and can execute zero-shot prompting without requiring task-specific fine-tuning. We evaluate DualMind on MetaWorld and Habitat through extensive experiments and demonstrate its superior generalizability compared to previous techniques, outperforming other generalist agents by over 50% and 70% on Habitat and MetaWorld, respectively. On the 45 tasks in MetaWorld, DualMind achieves over 30 tasks at a 90% success rate.
Human Decision-making is Susceptible to AI-driven Manipulation
Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.
End-to-End Training of Deep Visuomotor Policies
Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-to-end provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a partially observed guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. We evaluate our method on a range of real-world manipulation tasks that require close coordination between vision and control, such as screwing a cap onto a bottle, and present simulated comparisons to a range of prior policy search methods.
Continuous Thought Machines
Biological brains demonstrate complex neural activity, where the timing and interplay between neurons is critical to how brains process information. Most deep learning architectures simplify neural activity by abstracting away temporal dynamics. In this paper we challenge that paradigm. By incorporating neuron-level processing and synchronization, we can effectively reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two core innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process a history of incoming signals; and (2) neural synchronization employed as a latent representation. The CTM aims to strike a balance between oversimplified neuron abstractions that improve computational efficiency, and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable for deep learning. We demonstrate the CTM's strong performance and versatility across a range of challenging tasks, including ImageNet-1K classification, solving 2D mazes, sorting, parity computation, question-answering, and RL tasks. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems.
Towards Dynamic Theory of Mind: Evaluating LLM Adaptation to Temporal Evolution of Human States
As Large Language Models (LLMs) increasingly participate in human-AI interactions, evaluating their Theory of Mind (ToM) capabilities - particularly their ability to track dynamic mental states - becomes crucial. While existing benchmarks assess basic ToM abilities, they predominantly focus on static snapshots of mental states, overlooking the temporal evolution that characterizes real-world social interactions. We present DynToM, a novel benchmark specifically designed to evaluate LLMs' ability to understand and track the temporal progression of mental states across interconnected scenarios. Through a systematic four-step framework, we generate 1,100 social contexts encompassing 5,500 scenarios and 78,100 questions, each validated for realism and quality. Our comprehensive evaluation of ten state-of-the-art LLMs reveals that their average performance underperforms humans by 44.7\%, with performance degrading significantly when tracking and reasoning about the shift of mental states. This performance gap highlights fundamental limitations in current LLMs' ability to model the dynamic nature of human mental states.
Clever Hans or Neural Theory of Mind? Stress Testing Social Reasoning in Large Language Models
The escalating debate on AI's capabilities warrants developing reliable metrics to assess machine "intelligence". Recently, many anecdotal examples were used to suggest that newer large language models (LLMs) like ChatGPT and GPT-4 exhibit Neural Theory-of-Mind (N-ToM); however, prior work reached conflicting conclusions regarding those abilities. We investigate the extent of LLMs' N-ToM through an extensive evaluation on 6 tasks and find that while LLMs exhibit certain N-ToM abilities, this behavior is far from being robust. We further examine the factors impacting performance on N-ToM tasks and discover that LLMs struggle with adversarial examples, indicating reliance on shallow heuristics rather than robust ToM abilities. We caution against drawing conclusions from anecdotal examples, limited benchmark testing, and using human-designed psychological tests to evaluate models.
Holistic Safety and Responsibility Evaluations of Advanced AI Models
Safety and responsibility evaluations of advanced AI models are a critical but developing field of research and practice. In the development of Google DeepMind's advanced AI models, we innovated on and applied a broad set of approaches to safety evaluation. In this report, we summarise and share elements of our evolving approach as well as lessons learned for a broad audience. Key lessons learned include: First, theoretical underpinnings and frameworks are invaluable to organise the breadth of risk domains, modalities, forms, metrics, and goals. Second, theory and practice of safety evaluation development each benefit from collaboration to clarify goals, methods and challenges, and facilitate the transfer of insights between different stakeholders and disciplines. Third, similar key methods, lessons, and institutions apply across the range of concerns in responsibility and safety - including established and emerging harms. For this reason it is important that a wide range of actors working on safety evaluation and safety research communities work together to develop, refine and implement novel evaluation approaches and best practices, rather than operating in silos. The report concludes with outlining the clear need to rapidly advance the science of evaluations, to integrate new evaluations into the development and governance of AI, to establish scientifically-grounded norms and standards, and to promote a robust evaluation ecosystem.
Consciousness in Artificial Intelligence: Insights from the Science of Consciousness
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
CAD2RL: Real Single-Image Flight without a Single Real Image
Deep reinforcement learning has emerged as a promising and powerful technique for automatically acquiring control policies that can process raw sensory inputs, such as images, and perform complex behaviors. However, extending deep RL to real-world robotic tasks has proven challenging, particularly in safety-critical domains such as autonomous flight, where a trial-and-error learning process is often impractical. In this paper, we explore the following question: can we train vision-based navigation policies entirely in simulation, and then transfer them into the real world to achieve real-world flight without a single real training image? We propose a learning method that we call CAD^2RL, which can be used to perform collision-free indoor flight in the real world while being trained entirely on 3D CAD models. Our method uses single RGB images from a monocular camera, without needing to explicitly reconstruct the 3D geometry of the environment or perform explicit motion planning. Our learned collision avoidance policy is represented by a deep convolutional neural network that directly processes raw monocular images and outputs velocity commands. This policy is trained entirely on simulated images, with a Monte Carlo policy evaluation algorithm that directly optimizes the network's ability to produce collision-free flight. By highly randomizing the rendering settings for our simulated training set, we show that we can train a policy that generalizes to the real world, without requiring the simulator to be particularly realistic or high-fidelity. We evaluate our method by flying a real quadrotor through indoor environments, and further evaluate the design choices in our simulator through a series of ablation studies on depth prediction. For supplementary video see: https://youtu.be/nXBWmzFrj5s
Can Large Language Models Adapt to Other Agents In-Context?
As the research community aims to build better AI assistants that are more dynamic and personalized to the diversity of humans that they interact with, there is increased interest in evaluating the theory of mind capabilities of large language models (LLMs). Indeed, several recent studies suggest that LLM theory of mind capabilities are quite impressive, approximating human-level performance. Our paper aims to rebuke this narrative and argues instead that past studies were not directly measuring agent performance, potentially leading to findings that are illusory in nature as a result. We draw a strong distinction between what we call literal theory of mind i.e. measuring the agent's ability to predict the behavior of others and functional theory of mind i.e. adapting to agents in-context based on a rational response to predictions of their behavior. We find that top performing open source LLMs may display strong capabilities in literal theory of mind, depending on how they are prompted, but seem to struggle with functional theory of mind -- even when partner policies are exceedingly simple. Our work serves to highlight the double sided nature of inductive bias in LLMs when adapting to new situations. While this bias can lead to strong performance over limited horizons, it often hinders convergence to optimal long-term behavior.
Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning
Deep reinforcement learning (DRL) has shown significant promise for uncovering sophisticated control policies that interact in environments with complicated dynamics, such as stabilizing the magnetohydrodynamics of a tokamak fusion reactor or minimizing the drag force exerted on an object in a fluid flow. However, these algorithms require an abundance of training examples and may become prohibitively expensive for many applications. In addition, the reliance on deep neural networks often results in an uninterpretable, black-box policy that may be too computationally expensive to use with certain embedded systems. Recent advances in sparse dictionary learning, such as the sparse identification of nonlinear dynamics (SINDy), have shown promise for creating efficient and interpretable data-driven models in the low-data regime. In this work we introduce SINDy-RL, a unifying framework for combining SINDy and DRL to create efficient, interpretable, and trustworthy representations of the dynamics model, reward function, and control policy. We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems. SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms using significantly fewer interactions in the environment and results in an interpretable control policy orders of magnitude smaller than a deep neural network policy.
Fine-tuning Reinforcement Learning Models is Secretly a Forgetting Mitigation Problem
Fine-tuning is a widespread technique that allows practitioners to transfer pre-trained capabilities, as recently showcased by the successful applications of foundation models. However, fine-tuning reinforcement learning (RL) models remains a challenge. This work conceptualizes one specific cause of poor transfer, accentuated in the RL setting by the interplay between actions and observations: forgetting of pre-trained capabilities. Namely, a model deteriorates on the state subspace of the downstream task not visited in the initial phase of fine-tuning, on which the model behaved well due to pre-training. This way, we lose the anticipated transfer benefits. We identify conditions when this problem occurs, showing that it is common and, in many cases, catastrophic. Through a detailed empirical analysis of the challenging NetHack and Montezuma's Revenge environments, we show that standard knowledge retention techniques mitigate the problem and thus allow us to take full advantage of the pre-trained capabilities. In particular, in NetHack, we achieve a new state-of-the-art for neural models, improving the previous best score from 5K to over 10K points in the Human Monk scenario.
ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models
Large language models (LLMs) with chain-of-thought reasoning have demonstrated remarkable problem-solving capabilities, but controlling their computational effort remains a significant challenge for practical deployment. Recent proprietary systems like OpenAI's gpt-oss series have introduced discrete operational modes for intuitive reasoning control, but the open-source community has largely failed to achieve such capabilities. In this paper, we introduce ThinkDial, the first open-recipe end-to-end framework that successfully implements gpt-oss-style controllable reasoning through discrete operational modes. Our system enables seamless switching between three distinct reasoning regimes: High mode (full reasoning capability), Medium mode (50 percent token reduction with <10 percent performance degradation), and Low mode (75 percent token reduction with <15 percent performance degradation). We achieve this through an end-to-end training paradigm that integrates budget-mode control throughout the entire pipeline: budget-mode supervised fine-tuning that embeds controllable reasoning capabilities directly into the learning process, and two-phase budget-aware reinforcement learning with adaptive reward shaping. Extensive experiments demonstrate that ThinkDial achieves target compression-performance trade-offs with clear response length reductions while maintaining performance thresholds. The framework also exhibits strong generalization capabilities on out-of-distribution tasks.
DeepSeek-R1 Thoughtology: Let's <think> about LLM Reasoning
Large Reasoning Models like DeepSeek-R1 mark a fundamental shift in how LLMs approach complex problems. Instead of directly producing an answer for a given input, DeepSeek-R1 creates detailed multi-step reasoning chains, seemingly "thinking" about a problem before providing an answer. This reasoning process is publicly available to the user, creating endless opportunities for studying the reasoning behaviour of the model and opening up the field of Thoughtology. Starting from a taxonomy of DeepSeek-R1's basic building blocks of reasoning, our analyses on DeepSeek-R1 investigate the impact and controllability of thought length, management of long or confusing contexts, cultural and safety concerns, and the status of DeepSeek-R1 vis-\`a-vis cognitive phenomena, such as human-like language processing and world modelling. Our findings paint a nuanced picture. Notably, we show DeepSeek-R1 has a 'sweet spot' of reasoning, where extra inference time can impair model performance. Furthermore, we find a tendency for DeepSeek-R1 to persistently ruminate on previously explored problem formulations, obstructing further exploration. We also note strong safety vulnerabilities of DeepSeek-R1 compared to its non-reasoning counterpart, which can also compromise safety-aligned LLMs.
From Explainability to Interpretability: Interpretable Policies in Reinforcement Learning Via Model Explanation
Deep reinforcement learning (RL) has shown remarkable success in complex domains, however, the inherent black box nature of deep neural network policies raises significant challenges in understanding and trusting the decision-making processes. While existing explainable RL methods provide local insights, they fail to deliver a global understanding of the model, particularly in high-stakes applications. To overcome this limitation, we propose a novel model-agnostic approach that bridges the gap between explainability and interpretability by leveraging Shapley values to transform complex deep RL policies into transparent representations. The proposed approach offers two key contributions: a novel approach employing Shapley values to policy interpretation beyond local explanations and a general framework applicable to off-policy and on-policy algorithms. We evaluate our approach with three existing deep RL algorithms and validate its performance in two classic control environments. The results demonstrate that our approach not only preserves the original models' performance but also generates more stable interpretable policies.
Sequential Attacks on Agents for Long-Term Adversarial Goals
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.
Avalon's Game of Thoughts: Battle Against Deception through Recursive Contemplation
Recent breakthroughs in large language models (LLMs) have brought remarkable success in the field of LLM-as-Agent. Nevertheless, a prevalent assumption is that the information processed by LLMs is consistently honest, neglecting the pervasive deceptive or misleading information in human society and AI-generated content. This oversight makes LLMs susceptible to malicious manipulations, potentially resulting in detrimental outcomes. This study utilizes the intricate Avalon game as a testbed to explore LLMs' potential in deceptive environments. Avalon, full of misinformation and requiring sophisticated logic, manifests as a "Game-of-Thoughts". Inspired by the efficacy of humans' recursive thinking and perspective-taking in the Avalon game, we introduce a novel framework, Recursive Contemplation (ReCon), to enhance LLMs' ability to identify and counteract deceptive information. ReCon combines formulation and refinement contemplation processes; formulation contemplation produces initial thoughts and speech, while refinement contemplation further polishes them. Additionally, we incorporate first-order and second-order perspective transitions into these processes respectively. Specifically, the first-order allows an LLM agent to infer others' mental states, and the second-order involves understanding how others perceive the agent's mental state. After integrating ReCon with different LLMs, extensive experiment results from the Avalon game indicate its efficacy in aiding LLMs to discern and maneuver around deceptive information without extra fine-tuning and data. Finally, we offer a possible explanation for the efficacy of ReCon and explore the current limitations of LLMs in terms of safety, reasoning, speaking style, and format, potentially furnishing insights for subsequent research.
Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking, generating overly long and redundant reasoning trajectories. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we explicitly bootstrap such ability to alleviate overthinking in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition of LRMs. Specifically, we first inject difficulty hypnosis into output prefixes to guide the model toward adaptive reasoning depth, trained on a hybrid dataset mixing short and long reasoning paths. Then, we incorporate redundancy hypnosis, which supervises the intermediate reasoning steps to identify and eliminate unnecessary reasoning patterns. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs by over 70% on easy tasks and 40% on hard tasks while maintaining performance stability. The resulting outputs exhibit clear signs of difficulty-aware capabilities and reduced redundancy (e.g., reflection and looping).
Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control
Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs. Such capabilities are difficult to learn solely from task-specific data. This has led to the emergence of pre-trained vision-language models as a tool for transferring representations learned from internet-scale data to downstream tasks and new domains. However, commonly used contrastively trained representations such as in CLIP have been shown to fail at enabling embodied agents to gain a sufficiently fine-grained scene understanding -- a capability vital for control. To address this shortcoming, we consider representations from pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts and as such, contain text-conditioned representations that reflect highly fine-grained visuo-spatial information. Using pre-trained text-to-image diffusion models, we construct Stable Control Representations which allow learning downstream control policies that generalize to complex, open-ended environments. We show that policies learned using Stable Control Representations are competitive with state-of-the-art representation learning approaches across a broad range of simulated control settings, encompassing challenging manipulation and navigation tasks. Most notably, we show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.
Controlling Large Language Models Through Concept Activation Vectors
As large language models (LLMs) are widely deployed across various domains, the ability to control their generated outputs has become more critical. This control involves aligning LLMs outputs with human values and ethical principles or customizing LLMs on specific topics or styles for individual users. Existing controlled generation methods either require significant computational resources and extensive trial-and-error or provide coarse-grained control. In this paper, we propose Generation with Concept Activation Vector (GCAV), a lightweight model control framework that ensures accurate control without requiring resource-extensive fine-tuning. Specifically, GCAV first trains a concept activation vector for specified concepts to be controlled, such as toxicity. During inference, GCAV steers the concept vector in LLMs, for example, by removing the toxicity concept vector from the activation layers. Control experiments from different perspectives, including toxicity reduction, sentiment control, linguistic style, and topic control, demonstrate that our framework achieves state-of-the-art performance with granular control, allowing for fine-grained adjustments of both the steering layers and the steering magnitudes for individual samples.
Graph Neural Network based Agent in Google Research Football
Deep neural networks (DNN) can approximate value functions or policies for reinforcement learning, which makes the reinforcement learning algorithms more powerful. However, some DNNs, such as convolutional neural networks (CNN), cannot extract enough information or take too long to obtain enough features from the inputs under specific circumstances of reinforcement learning. For example, the input data of Google Research Football, a reinforcement learning environment which trains agents to play football, is the small map of players' locations. The information is contained not only in the coordinates of players, but also in the relationships between different players. CNNs can neither extract enough information nor take too long to train. To address this issue, this paper proposes a deep q-learning network (DQN) with a graph neural network (GNN) as its model. The GNN transforms the input data into a graph which better represents the football players' locations so that it extracts more information of the interactions between different players. With two GNNs to approximate its local and target value functions, this DQN allows players to learn from their experience by using value functions to see the prospective value of each intended action. The proposed model demonstrated the power of GNN in the football game by outperforming other DRL models with significantly fewer steps.
ControlThinker: Unveiling Latent Semantics for Controllable Image Generation through Visual Reasoning
The field of controllable image generation has seen significant advancements, with various architectures improving generation layout consistency with control signals. However, contemporary methods still face challenges in bridging the semantic gap between input text prompts with sparse semantics and the target images, often over-relying on low-level control signals to infer regional details. To address this challenge, we propose ControlThinker, a novel framework that employs a "comprehend-then-generate" paradigm. Firstly, by incentivizing the visual reasoning capability of a MLLM, latent semantics from control images are mined to enrich text prompts. This enriched semantic understanding then seamlessly aids in image generation without the need for additional complex modifications. To further tackle the uncertainty arising from the ambiguity of control images, we encourage broader exploration of reasoning trajectories and select the optimal one using a metric-based output reward model (ORM). Extensive experimental results demonstrate that ControlThinker effectively mitigates the semantic gap between raw text prompts and target images, resulting in improved visual quality and semantic consistency across a wide range of benchmarks. The code and models are available at https://github.com/Maplebb/ControlThinker.
Think on your Feet: Adaptive Thinking via Reinforcement Learning for Social Agents
Effective social intelligence simulation requires language agents to dynamically adjust reasoning depth, a capability notably absent in current approaches. While existing methods either lack this kind of reasoning capability or enforce uniform long chain-of-thought reasoning across all scenarios, resulting in excessive token usage and inappropriate social simulation. In this paper, we propose Adaptive Mode Learning (AML) that strategically selects from four thinking modes (intuitive reaction rightarrow deep contemplation) based on real-time context. Our framework's core innovation, the Adaptive Mode Policy Optimization (AMPO) algorithm, introduces three key advancements over existing methods: (1) Multi-granular thinking mode design, (2) Context-aware mode switching across social interaction, and (3) Token-efficient reasoning via depth-adaptive processing. Extensive experiments on social intelligence tasks confirm that AML achieves 15.6% higher task performance than state-of-the-art methods. Notably, our method outperforms GRPO by 7.0% with 32.8% shorter reasoning chains. These results demonstrate that context-sensitive thinking mode selection, as implemented in AMPO, enables more human-like adaptive reasoning than GRPO's fixed-depth approach
Router-Tuning: A Simple and Effective Approach for Enabling Dynamic-Depth in Transformers
Traditional transformer models often allocate a fixed amount of computational resources to every input token, leading to inefficient and unnecessary computation. To address this, the Mixture of Depths (MoD) was introduced to dynamically adjust the computational depth by skipping less important layers. Despite its promise, current MoD approaches remain under-explored and face two main challenges: (1) high training costs due to the need to train the entire model along with the routers that determine which layers to skip, and (2) the risk of performance degradation when important layers are bypassed. In response to the first issue, we propose Router-Tuning, a method that fine-tunes only the router on a small dataset, drastically reducing the computational overhead associated with full model training. For the second challenge, we propose MindSkip, which deploys Attention with Dynamic Depths. This method preserves the model's performance while significantly enhancing computational and memory efficiency. Extensive experiments demonstrate that our approach delivers competitive results while dramatically improving the computation efficiency, e.g., 21\% speedup and only a 0.2\% performance drop. The code is released at https://github.com/CASE-Lab-UMD/Router-Tuning.
Deconstructing Attention: Investigating Design Principles for Effective Language Modeling
The success of Transformer language models is widely credited to their dot-product attention mechanism, which interweaves a set of key design principles: mixing information across positions (enabling multi-token interactions), sequence-dependent activations (where attention weights adapt to each input), a specific mathematical form (dot-product similarities plus softmax weighting), and coupling of queries and keys to evolving hidden states (grounding attention in the current layer). However, the necessity of each of these principles remains largely untested. In this work, we systematically deconstruct attention by designing controlled variants that selectively relax these principles, applied both uniformly across all layers and in hybrid architectures where only some layers retain standard attention. Our empirical analysis reveals that mechanisms for mixing tokens are indispensable, as their absence collapses models to near-random behavior, while the exact mathematical form and sequence dependency can be substantially relaxed, especially when preserved in just a subset of layers. Surprisingly, even variants that fail in isolation can achieve robust performance when interleaved with standard attention, highlighting a cooperative effect. These findings deepen our understanding of what truly underpins attention's effectiveness and open new avenues for simplifying language models without sacrificing performance.
Machine Theory of Mind
Theory of mind (ToM; Premack & Woodruff, 1978) broadly refers to humans' ability to represent the mental states of others, including their desires, beliefs, and intentions. We propose to train a machine to build such models too. We design a Theory of Mind neural network -- a ToMnet -- which uses meta-learning to build models of the agents it encounters, from observations of their behaviour alone. Through this process, it acquires a strong prior model for agents' behaviour, as well as the ability to bootstrap to richer predictions about agents' characteristics and mental states using only a small number of behavioural observations. We apply the ToMnet to agents behaving in simple gridworld environments, showing that it learns to model random, algorithmic, and deep reinforcement learning agents from varied populations, and that it passes classic ToM tasks such as the "Sally-Anne" test (Wimmer & Perner, 1983; Baron-Cohen et al., 1985) of recognising that others can hold false beliefs about the world. We argue that this system -- which autonomously learns how to model other agents in its world -- is an important step forward for developing multi-agent AI systems, for building intermediating technology for machine-human interaction, and for advancing the progress on interpretable AI.
Dream to Control: Learning Behaviors by Latent Imagination
Learned world models summarize an agent's experience to facilitate learning complex behaviors. While learning world models from high-dimensional sensory inputs is becoming feasible through deep learning, there are many potential ways for deriving behaviors from them. We present Dreamer, a reinforcement learning agent that solves long-horizon tasks from images purely by latent imagination. We efficiently learn behaviors by propagating analytic gradients of learned state values back through trajectories imagined in the compact state space of a learned world model. On 20 challenging visual control tasks, Dreamer exceeds existing approaches in data-efficiency, computation time, and final performance.
Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models
While humans naturally develop theory of mind (ToM), the capability to understand other people's mental states and beliefs, state-of-the-art large language models (LLMs) underperform on simple ToM benchmarks. We posit that we can extend our understanding of LLMs' ToM abilities by evaluating key human ToM precursors -- perception inference and perception-to-belief inference -- in LLMs. We introduce two datasets, Percept-ToMi and Percept-FANToM, to evaluate these precursory inferences for ToM in LLMs by annotating characters' perceptions on ToMi and FANToM, respectively. Our evaluation of eight state-of-the-art LLMs reveals that the models generally perform well in perception inference while exhibiting limited capability in perception-to-belief inference (e.g., lack of inhibitory control). Based on these results, we present PercepToM, a novel ToM method leveraging LLMs' strong perception inference capability while supplementing their limited perception-to-belief inference. Experimental results demonstrate that PercepToM significantly enhances LLM's performance, especially in false belief scenarios.
Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and primitive movement reasoning.
Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.
SCP-Diff: Spatial-Categorical Joint Prior for Diffusion Based Semantic Image Synthesis
Semantic image synthesis (SIS) shows good promises for sensor simulation. However, current best practices in this field, based on GANs, have not yet reached the desired level of quality. As latent diffusion models make significant strides in image generation, we are prompted to evaluate ControlNet, a notable method for its dense control capabilities. Our investigation uncovered two primary issues with its results: the presence of weird sub-structures within large semantic areas and the misalignment of content with the semantic mask. Through empirical study, we pinpointed the cause of these problems as a mismatch between the noised training data distribution and the standard normal prior applied at the inference stage. To address this challenge, we developed specific noise priors for SIS, encompassing spatial, categorical, and a novel spatial-categorical joint prior for inference. This approach, which we have named SCP-Diff, has set new state-of-the-art results in SIS on Cityscapes, ADE20K and COCO-Stuff, yielding a FID as low as 10.53 on Cityscapes. The code and models can be accessed via the project page.
