- Classification of motor faults based on transmission coefficient and reflection coefficient of omni-directional antenna using DCNN The most commonly used electrical rotary machines in the field are induction machines. In this paper, we propose an antenna based approach for the classification of motor faults in induction motors using the reflection coefficient S11 and the transmission coefficient S21 of the antenna. The spectrograms of S11 and S21 are seen to possess unique signatures for various fault conditions that are used for the classification. To learn the required characteristics and classification boundaries, deep convolution neural network (DCNN) is applied to the spectrogram of the S-parameter. DCNN has been found to reach classification accuracy 93% using S11, 98.1% using S21 and 100% using both S11 and S21. The effect of antenna operating frequency, its location and duration of signal on the classification accuracy is also presented and discussed. 3 authors · Nov 3, 2025
- Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation Over the past few years, softmax and SGD have become a commonly used component and the default training strategy in CNN frameworks, respectively. However, when optimizing CNNs with SGD, the saturation behavior behind softmax always gives us an illusion of training well and then is omitted. In this paper, we first emphasize that the early saturation behavior of softmax will impede the exploration of SGD, which sometimes is a reason for model converging at a bad local-minima, then propose Noisy Softmax to mitigating this early saturation issue by injecting annealed noise in softmax during each iteration. This operation based on noise injection aims at postponing the early saturation and further bringing continuous gradients propagation so as to significantly encourage SGD solver to be more exploratory and help to find a better local-minima. This paper empirically verifies the superiority of the early softmax desaturation, and our method indeed improves the generalization ability of CNN model by regularization. We experimentally find that this early desaturation helps optimization in many tasks, yielding state-of-the-art or competitive results on several popular benchmark datasets. 3 authors · Aug 12, 2017