new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 19

SCI: A Metacognitive Control for Signal Dynamics

Modern deep learning systems are typically deployed as open-loop function approximators: they map inputs to outputs in a single pass, without regulating how much computation or explanatory effort is spent on a given case. In safety-critical settings, this is brittle: easy and ambiguous inputs receive identical processing, and uncertainty is only read off retrospectively from raw probabilities. We introduce the Surgical Cognitive Interpreter (SCI), a lightweight closed-loop metacognitive control layer that wraps an existing stochastic model and turns prediction into an iterative process. SCI monitors a scalar interpretive state SP(t), here instantiated as a normalized entropy-based confidence signal, and adaptively decides whether to stop, continue sampling, or abstain. The goal is not to improve accuracy per se, but to regulate interpretive error ΔSP and expose a safety signal that tracks when the underlying model is likely to fail. We instantiate SCI around Monte Carlo dropout classifiers in three domains: vision (MNIST digits), medical time series (MIT-BIH arrhythmia), and industrial condition monitoring (rolling-element bearings). In all cases, the controller allocates more inference steps to misclassified inputs than to correct ones (up to about 3-4x on MNIST and bearings, and 1.4x on MIT-BIH). The resulting ΔSP acts as a usable safety signal for detecting misclassifications (AUROC 0.63 on MNIST, 0.70 on MIT-BIH, 0.86 on bearings). Code and reproducibility: https://github.com/vishal-1344/sci

  • 1 authors
·
Nov 15, 2025

PIXART-δ: Fast and Controllable Image Generation with Latent Consistency Models

This technical report introduces PIXART-{\delta}, a text-to-image synthesis framework that integrates the Latent Consistency Model (LCM) and ControlNet into the advanced PIXART-{\alpha} model. PIXART-{\alpha} is recognized for its ability to generate high-quality images of 1024px resolution through a remarkably efficient training process. The integration of LCM in PIXART-{\delta} significantly accelerates the inference speed, enabling the production of high-quality images in just 2-4 steps. Notably, PIXART-{\delta} achieves a breakthrough 0.5 seconds for generating 1024x1024 pixel images, marking a 7x improvement over the PIXART-{\alpha}. Additionally, PIXART-{\delta} is designed to be efficiently trainable on 32GB V100 GPUs within a single day. With its 8-bit inference capability (von Platen et al., 2023), PIXART-{\delta} can synthesize 1024px images within 8GB GPU memory constraints, greatly enhancing its usability and accessibility. Furthermore, incorporating a ControlNet-like module enables fine-grained control over text-to-image diffusion models. We introduce a novel ControlNet-Transformer architecture, specifically tailored for Transformers, achieving explicit controllability alongside high-quality image generation. As a state-of-the-art, open-source image generation model, PIXART-{\delta} offers a promising alternative to the Stable Diffusion family of models, contributing significantly to text-to-image synthesis.

  • 8 authors
·
Jan 10, 2024 4

Twin Peaks: Dual-Head Architecture for Structure-Free Prediction of Protein-Protein Binding Affinity and Mutation Effects

We present a novel dual-head deep learning architecture for protein-protein interaction modeling that enables simultaneous prediction of binding affinity (ΔG) and mutation-induced affinity changes (ΔΔG) using only protein sequence information. Our approach offers a significant advancement over existing methods by employing specialized prediction heads that operate on a shared representation network, allowing direct and optimized prediction of both values. To ensure robust generalization, we integrated complementary datasets from SKEMPI v2 and PDBbind with a rigorous protein domain-based splitting strategy that prevents information leakage between training and validation sets. Our architecture combines transformer-based encoders with a novel cross-attention mechanism that processes paired protein sequences directly, without requiring any structural information. The network embeds input sequences using ESM3 representations, then employs a learnable sliced window embedding layer to manage variable-length sequences efficiently. A multi-layer transformer encoder with bidirectional self-attention captures intra-protein patterns, while cross-attention layers enable explicit modeling of interactions between protein pairs. This shared representation network feeds into separate ΔG and ΔΔG prediction heads, allowing task-specific optimization while leveraging common features. The model achieves ΔΔG validation of Pearson correlation at 0.485, while maintaining strong ΔG predictions (Pearson: 0.638). While existing approaches require protein structure data and binding interface information, our model eliminates these constraints. This provides a critical advantage for the numerous proteins with unknown structures or those challenging to crystallize, such as viral and intrinsically disordered proteins.

  • 2 authors
·
Sep 26, 2025