Add inference example script
Browse files- inference_example.py +85 -0
inference_example.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Multi-Domain Classifier - Inference Example
|
| 3 |
+
Repository: https://huggingface.co/ovinduG/multi-domain-classifier-phi3
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
+
from peft import PeftModel
|
| 8 |
+
import torch
|
| 9 |
+
import json
|
| 10 |
+
|
| 11 |
+
class MultiDomainClassifier:
|
| 12 |
+
def __init__(self, model_id="ovinduG/multi-domain-classifier-phi3"):
|
| 13 |
+
print("Loading model...")
|
| 14 |
+
|
| 15 |
+
# Load base model
|
| 16 |
+
self.base_model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
| 18 |
+
torch_dtype=torch.bfloat16,
|
| 19 |
+
device_map="auto"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# Load LoRA adapter
|
| 23 |
+
self.model = PeftModel.from_pretrained(self.base_model, model_id)
|
| 24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 25 |
+
self.model.eval()
|
| 26 |
+
|
| 27 |
+
print("✅ Model loaded!")
|
| 28 |
+
|
| 29 |
+
def predict(self, query: str) -> dict:
|
| 30 |
+
"""Classify a query into domains"""
|
| 31 |
+
|
| 32 |
+
prompt = f"""Classify this query: {query}
|
| 33 |
+
|
| 34 |
+
Output JSON format:
|
| 35 |
+
{
|
| 36 |
+
"primary_domain": "domain_name",
|
| 37 |
+
"primary_confidence": 0.95,
|
| 38 |
+
"is_multi_domain": true/false,
|
| 39 |
+
"secondary_domains": [{"domain": "name", "confidence": 0.85}]
|
| 40 |
+
}"""
|
| 41 |
+
|
| 42 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = self.model.generate(
|
| 46 |
+
**inputs,
|
| 47 |
+
max_new_tokens=200,
|
| 48 |
+
temperature=0.1,
|
| 49 |
+
do_sample=False,
|
| 50 |
+
use_cache=False
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
# Parse JSON from response
|
| 56 |
+
try:
|
| 57 |
+
json_str = response.split("Output JSON format:")[-1].strip()
|
| 58 |
+
result = json.loads(json_str)
|
| 59 |
+
return result
|
| 60 |
+
except:
|
| 61 |
+
return {"error": "Failed to parse response", "raw": response}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Example usage
|
| 65 |
+
if __name__ == "__main__":
|
| 66 |
+
# Initialize classifier
|
| 67 |
+
classifier = MultiDomainClassifier()
|
| 68 |
+
|
| 69 |
+
# Example queries
|
| 70 |
+
queries = [
|
| 71 |
+
"Write a Python function to calculate factorial",
|
| 72 |
+
"Build ML model to analyze sales data and create API endpoints",
|
| 73 |
+
"What is quantum entanglement?",
|
| 74 |
+
"Create a REST API for healthcare diabetes prediction"
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
print("\n" + "="*80)
|
| 78 |
+
print("CLASSIFICATION EXAMPLES")
|
| 79 |
+
print("="*80)
|
| 80 |
+
|
| 81 |
+
for query in queries:
|
| 82 |
+
print(f"\nQuery: {query}")
|
| 83 |
+
result = classifier.predict(query)
|
| 84 |
+
print(f"Result: {json.dumps(result, indent=2)}")
|
| 85 |
+
print("-"*80)
|