Commit
·
b5cb8d5
1
Parent(s):
ce11e47
Update flash_attn_triton.py
Browse filesUpdates the triton flash attention file from llm_foundry
- flash_attn_triton.py +316 -590
flash_attn_triton.py
CHANGED
|
@@ -1,23 +1,17 @@
|
|
| 1 |
# Copyright 2022 MosaicML Examples authors
|
| 2 |
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
#
|
| 8 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 9 |
-
# you may not use this file except in compliance with the License.
|
| 10 |
-
# You may obtain a copy of the License at
|
| 11 |
-
#
|
| 12 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 13 |
-
#
|
| 14 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 15 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 16 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 17 |
-
# See the License for the specific language governing permissions and
|
| 18 |
-
# limitations under the License.
|
| 19 |
|
| 20 |
*Experimental* implementation of FlashAttention in Triton.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
| 22 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
| 23 |
|
|
@@ -33,87 +27,65 @@ Changes:
|
|
| 33 |
small batch size * nheads.
|
| 34 |
|
| 35 |
Caution:
|
|
|
|
|
|
|
|
|
|
| 36 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
| 37 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
| 38 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
| 39 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
| 40 |
that there are none left for other head dimensions.
|
|
|
|
| 41 |
Differences between this Triton version and the CUDA version:
|
| 42 |
- Triton version doesn't support dropout.
|
| 43 |
-
- Triton forward is generally faster than CUDA forward
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
- Triton version doesn't
|
|
|
|
| 47 |
"""
|
| 48 |
|
| 49 |
import math
|
| 50 |
|
| 51 |
import torch
|
| 52 |
-
import triton # type: ignore (reportMissingImports)
|
| 53 |
-
import triton.language as tl # type: ignore (reportMissingImports)
|
| 54 |
-
from einops import repeat
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
@triton.jit
|
| 78 |
def _fwd_kernel(
|
| 79 |
-
Q,
|
| 80 |
-
|
| 81 |
-
V,
|
| 82 |
-
Bias,
|
| 83 |
-
Out,
|
| 84 |
-
Lse,
|
| 85 |
-
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
| 86 |
softmax_scale,
|
| 87 |
-
stride_qb,
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
stride_vh,
|
| 95 |
-
stride_vn,
|
| 96 |
-
stride_bb,
|
| 97 |
-
stride_bh,
|
| 98 |
-
stride_bm,
|
| 99 |
-
stride_ob,
|
| 100 |
-
stride_oh,
|
| 101 |
-
stride_om,
|
| 102 |
-
nheads,
|
| 103 |
-
seqlen_q,
|
| 104 |
-
seqlen_k,
|
| 105 |
-
seqlen_q_rounded,
|
| 106 |
-
headdim,
|
| 107 |
-
CACHE_KEY_SEQLEN_Q,
|
| 108 |
-
CACHE_KEY_SEQLEN_K,
|
| 109 |
BIAS_TYPE: tl.constexpr,
|
| 110 |
IS_CAUSAL: tl.constexpr,
|
| 111 |
BLOCK_HEADDIM: tl.constexpr,
|
| 112 |
-
EVEN_M: tl.constexpr,
|
| 113 |
-
|
| 114 |
-
EVEN_HEADDIM: tl.constexpr,
|
| 115 |
-
BLOCK_M: tl.constexpr,
|
| 116 |
-
BLOCK_N: tl.constexpr,
|
| 117 |
):
|
| 118 |
start_m = tl.program_id(0)
|
| 119 |
off_hb = tl.program_id(1)
|
|
@@ -130,23 +102,17 @@ def _fwd_kernel(
|
|
| 130 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
| 131 |
# https://github.com/openai/triton/issues/741
|
| 132 |
# I'm seeing a tiny bit of difference (5-7us)
|
| 133 |
-
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 137 |
-
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (
|
| 138 |
-
offs_n[:, None] * stride_vn + offs_d[None, :])
|
| 139 |
if BIAS_TYPE == 'vector':
|
| 140 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
| 141 |
elif BIAS_TYPE == 'matrix':
|
| 142 |
-
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (
|
| 143 |
-
offs_m[:, None] * stride_bm + offs_n[None, :])
|
| 144 |
-
else:
|
| 145 |
-
raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
|
| 146 |
# initialize pointer to m and l
|
| 147 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
| 148 |
-
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
| 149 |
-
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float(
|
| 150 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
| 151 |
# load q: it will stay in SRAM throughout
|
| 152 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
|
@@ -160,13 +126,10 @@ def _fwd_kernel(
|
|
| 160 |
if EVEN_HEADDIM:
|
| 161 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
| 162 |
else:
|
| 163 |
-
q = tl.load(q_ptrs,
|
| 164 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
| 165 |
-
(offs_d[None, :] < headdim),
|
| 166 |
other=0.0)
|
| 167 |
# loop over k, v and update accumulator
|
| 168 |
-
end_n = seqlen_k if not IS_CAUSAL else tl.minimum(
|
| 169 |
-
(start_m + 1) * BLOCK_M, seqlen_k)
|
| 170 |
for start_n in range(0, end_n, BLOCK_N):
|
| 171 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 172 |
# -- compute qk ----
|
|
@@ -174,48 +137,37 @@ def _fwd_kernel(
|
|
| 174 |
if EVEN_HEADDIM:
|
| 175 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
| 176 |
else:
|
| 177 |
-
k = tl.load(k_ptrs + start_n * stride_kn,
|
| 178 |
-
mask=offs_d[None, :] < headdim,
|
| 179 |
-
other=0.0)
|
| 180 |
else:
|
| 181 |
if EVEN_HEADDIM:
|
| 182 |
-
k = tl.load(k_ptrs + start_n * stride_kn,
|
| 183 |
-
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 184 |
other=0.0)
|
| 185 |
else:
|
| 186 |
k = tl.load(k_ptrs + start_n * stride_kn,
|
| 187 |
-
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
| 188 |
-
(offs_d[None, :] < headdim),
|
| 189 |
other=0.0)
|
| 190 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 191 |
qk += tl.dot(q, k, trans_b=True)
|
| 192 |
# Trying to combine the two masks seem to make the result wrong
|
| 193 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 194 |
-
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0,
|
| 195 |
-
float('-inf'))
|
| 196 |
if IS_CAUSAL:
|
| 197 |
-
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0,
|
| 198 |
-
float('-inf'))
|
| 199 |
if BIAS_TYPE != 'none':
|
| 200 |
if BIAS_TYPE == 'vector':
|
| 201 |
if EVEN_N:
|
| 202 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 203 |
else:
|
| 204 |
-
bias = tl.load(b_ptrs + start_n,
|
| 205 |
-
mask=(start_n + offs_n) < seqlen_k,
|
| 206 |
-
other=0.0).to(tl.float32)
|
| 207 |
bias = bias[None, :]
|
| 208 |
elif BIAS_TYPE == 'matrix':
|
| 209 |
if EVEN_M & EVEN_N:
|
| 210 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 211 |
else:
|
| 212 |
bias = tl.load(b_ptrs + start_n,
|
| 213 |
-
mask=(offs_m[:, None] < seqlen_q)
|
| 214 |
-
|
| 215 |
other=0.0).to(tl.float32)
|
| 216 |
-
else:
|
| 217 |
-
raise ValueError(
|
| 218 |
-
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
| 219 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 220 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 221 |
# to multiply with softmax_scale here.
|
|
@@ -240,18 +192,14 @@ def _fwd_kernel(
|
|
| 240 |
if EVEN_HEADDIM:
|
| 241 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
| 242 |
else:
|
| 243 |
-
v = tl.load(v_ptrs + start_n * stride_vn,
|
| 244 |
-
mask=offs_d[None, :] < headdim,
|
| 245 |
-
other=0.0)
|
| 246 |
else:
|
| 247 |
if EVEN_HEADDIM:
|
| 248 |
-
v = tl.load(v_ptrs + start_n * stride_vn,
|
| 249 |
-
mask=(start_n + offs_n)[:, None] < seqlen_k,
|
| 250 |
other=0.0)
|
| 251 |
else:
|
| 252 |
v = tl.load(v_ptrs + start_n * stride_vn,
|
| 253 |
-
mask=((start_n + offs_n)[:, None] < seqlen_k) &
|
| 254 |
-
(offs_d[None, :] < headdim),
|
| 255 |
other=0.0)
|
| 256 |
p = p.to(v.dtype)
|
| 257 |
acc_o += tl.dot(p, v)
|
|
@@ -273,9 +221,8 @@ def _fwd_kernel(
|
|
| 273 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
| 274 |
tl.store(lse_ptrs, lse_i)
|
| 275 |
# initialize pointers to output
|
| 276 |
-
|
| 277 |
-
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (
|
| 278 |
-
offs_m[:, None] * stride_om + offs_n[None, :])
|
| 279 |
if EVEN_M:
|
| 280 |
if EVEN_HEADDIM:
|
| 281 |
tl.store(out_ptrs, acc_o)
|
|
@@ -285,29 +232,17 @@ def _fwd_kernel(
|
|
| 285 |
if EVEN_HEADDIM:
|
| 286 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
| 287 |
else:
|
| 288 |
-
tl.store(out_ptrs,
|
| 289 |
-
|
| 290 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
| 291 |
-
(offs_d[None, :] < headdim))
|
| 292 |
|
| 293 |
|
| 294 |
@triton.jit
|
| 295 |
def _bwd_preprocess_do_o_dot(
|
| 296 |
-
Out,
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
stride_om,
|
| 302 |
-
stride_dob,
|
| 303 |
-
stride_doh,
|
| 304 |
-
stride_dom,
|
| 305 |
-
nheads,
|
| 306 |
-
seqlen_q,
|
| 307 |
-
seqlen_q_rounded,
|
| 308 |
-
headdim,
|
| 309 |
-
BLOCK_M: tl.constexpr,
|
| 310 |
-
BLOCK_HEADDIM: tl.constexpr,
|
| 311 |
):
|
| 312 |
start_m = tl.program_id(0)
|
| 313 |
off_hb = tl.program_id(1)
|
|
@@ -317,54 +252,54 @@ def _bwd_preprocess_do_o_dot(
|
|
| 317 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 318 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 319 |
# load
|
| 320 |
-
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh +
|
| 321 |
-
offs_m[:, None]
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh +
|
| 325 |
-
offs_m[:, None] * stride_dom + offs_d[None, :],
|
| 326 |
-
mask=(offs_m[:, None] < seqlen_q) &
|
| 327 |
-
(offs_d[None, :] < headdim),
|
| 328 |
-
other=0.0).to(tl.float32)
|
| 329 |
delta = tl.sum(o * do, axis=1)
|
| 330 |
# write-back
|
| 331 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
| 332 |
|
| 333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
@triton.jit
|
| 335 |
def _bwd_kernel_one_col_block(
|
| 336 |
start_n,
|
| 337 |
-
Q,
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
Bias,
|
| 341 |
-
DO,
|
| 342 |
-
DQ,
|
| 343 |
-
DK,
|
| 344 |
-
DV,
|
| 345 |
-
LSE,
|
| 346 |
-
D,
|
| 347 |
softmax_scale,
|
| 348 |
-
stride_qm,
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
stride_bm,
|
| 352 |
-
stride_dom,
|
| 353 |
-
stride_dqm,
|
| 354 |
-
stride_dkn,
|
| 355 |
-
stride_dvn,
|
| 356 |
-
seqlen_q,
|
| 357 |
-
seqlen_k,
|
| 358 |
-
headdim,
|
| 359 |
ATOMIC_ADD: tl.constexpr,
|
| 360 |
BIAS_TYPE: tl.constexpr,
|
| 361 |
IS_CAUSAL: tl.constexpr,
|
| 362 |
BLOCK_HEADDIM: tl.constexpr,
|
| 363 |
-
EVEN_M: tl.constexpr,
|
| 364 |
-
|
| 365 |
-
EVEN_HEADDIM: tl.constexpr,
|
| 366 |
-
BLOCK_M: tl.constexpr,
|
| 367 |
-
BLOCK_N: tl.constexpr,
|
| 368 |
):
|
| 369 |
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
| 370 |
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
|
@@ -383,11 +318,19 @@ def _bwd_kernel_one_col_block(
|
|
| 383 |
b_ptrs = Bias + offs_n
|
| 384 |
elif BIAS_TYPE == 'matrix':
|
| 385 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
| 386 |
-
else:
|
| 387 |
-
raise ValueError("BIAS_TYPE must be one of {'vector', 'matrix'}")
|
| 388 |
# initialize dv and dk
|
| 389 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 390 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
# k and v stay in SRAM throughout
|
| 392 |
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
| 393 |
# if we just call tl.load(k_ptrs), we get the wrong output!
|
|
@@ -403,13 +346,9 @@ def _bwd_kernel_one_col_block(
|
|
| 403 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 404 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 405 |
else:
|
| 406 |
-
k = tl.load(k_ptrs,
|
| 407 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
| 408 |
-
(offs_d[None, :] < headdim),
|
| 409 |
other=0.0)
|
| 410 |
-
v = tl.load(v_ptrs,
|
| 411 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
| 412 |
-
(offs_d[None, :] < headdim),
|
| 413 |
other=0.0)
|
| 414 |
# loop over rows
|
| 415 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
|
@@ -422,41 +361,33 @@ def _bwd_kernel_one_col_block(
|
|
| 422 |
q = tl.load(q_ptrs)
|
| 423 |
else:
|
| 424 |
if EVEN_HEADDIM:
|
| 425 |
-
q = tl.load(q_ptrs,
|
| 426 |
-
mask=offs_m_curr[:, None] < seqlen_q,
|
| 427 |
-
other=0.0)
|
| 428 |
else:
|
| 429 |
-
q = tl.load(q_ptrs,
|
| 430 |
-
|
| 431 |
-
(offs_d[None, :] < headdim),
|
| 432 |
-
other=0.0)
|
| 433 |
# recompute p = softmax(qk, dim=-1).T
|
| 434 |
qk = tl.dot(q, k, trans_b=True)
|
| 435 |
# Trying to combine the two masks seem to make the result wrong
|
| 436 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 437 |
-
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float(
|
| 438 |
if IS_CAUSAL:
|
| 439 |
-
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk,
|
| 440 |
-
float('-inf'))
|
| 441 |
if BIAS_TYPE != 'none':
|
|
|
|
| 442 |
if BIAS_TYPE == 'vector':
|
| 443 |
if EVEN_N:
|
| 444 |
bias = tl.load(b_ptrs).to(tl.float32)
|
| 445 |
else:
|
| 446 |
-
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k,
|
| 447 |
-
other=0.0).to(tl.float32)
|
| 448 |
bias = bias[None, :]
|
| 449 |
elif BIAS_TYPE == 'matrix':
|
| 450 |
if EVEN_M & EVEN_N:
|
| 451 |
bias = tl.load(b_ptrs).to(tl.float32)
|
| 452 |
else:
|
| 453 |
bias = tl.load(b_ptrs,
|
| 454 |
-
mask=(offs_m_curr[:, None] < seqlen_q)
|
| 455 |
-
|
| 456 |
other=0.0).to(tl.float32)
|
| 457 |
-
else:
|
| 458 |
-
raise ValueError(
|
| 459 |
-
"BIAS_TYPE must be one of {'vector', 'matrix'}")
|
| 460 |
qk = qk * softmax_scale + bias
|
| 461 |
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
| 462 |
# Also wrong for headdim=64.
|
|
@@ -476,10 +407,8 @@ def _bwd_kernel_one_col_block(
|
|
| 476 |
do = tl.load(do_ptrs)
|
| 477 |
else:
|
| 478 |
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
| 479 |
-
do = tl.load(do_ptrs,
|
| 480 |
-
|
| 481 |
-
(offs_d[None, :] < headdim),
|
| 482 |
-
other=0.0)
|
| 483 |
# if EVEN_M:
|
| 484 |
# if EVEN_HEADDIM:
|
| 485 |
# do = tl.load(do_ptrs)
|
|
@@ -511,48 +440,38 @@ def _bwd_kernel_one_col_block(
|
|
| 511 |
# compute dk = dot(ds.T, q)
|
| 512 |
dk += tl.dot(ds, q, trans_a=True)
|
| 513 |
# compute dq
|
|
|
|
|
|
|
| 514 |
if not ATOMIC_ADD:
|
| 515 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 516 |
-
dq = tl.load(dq_ptrs, eviction_policy=
|
| 517 |
dq += tl.dot(ds, k)
|
| 518 |
-
tl.store(dq_ptrs, dq, eviction_policy=
|
| 519 |
else:
|
| 520 |
if EVEN_HEADDIM:
|
| 521 |
-
dq = tl.load(dq_ptrs,
|
| 522 |
-
|
| 523 |
-
other=0.0,
|
| 524 |
-
eviction_policy='evict_last')
|
| 525 |
dq += tl.dot(ds, k)
|
| 526 |
-
tl.store(dq_ptrs,
|
| 527 |
-
|
| 528 |
-
mask=offs_m_curr[:, None] < seqlen_q,
|
| 529 |
-
eviction_policy='evict_last')
|
| 530 |
else:
|
| 531 |
dq = tl.load(dq_ptrs,
|
| 532 |
-
mask=(offs_m_curr[:, None] < seqlen_q) &
|
| 533 |
-
|
| 534 |
-
other=0.0,
|
| 535 |
-
eviction_policy='evict_last')
|
| 536 |
dq += tl.dot(ds, k)
|
| 537 |
-
tl.store(dq_ptrs,
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
(offs_d[None, :] < headdim),
|
| 541 |
-
eviction_policy='evict_last')
|
| 542 |
else: # If we're parallelizing across the seqlen_k dimension
|
| 543 |
dq = tl.dot(ds, k)
|
| 544 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 545 |
tl.atomic_add(dq_ptrs, dq)
|
| 546 |
else:
|
| 547 |
if EVEN_HEADDIM:
|
| 548 |
-
tl.atomic_add(dq_ptrs,
|
| 549 |
-
dq,
|
| 550 |
-
mask=offs_m_curr[:, None] < seqlen_q)
|
| 551 |
else:
|
| 552 |
-
tl.atomic_add(dq_ptrs,
|
| 553 |
-
|
| 554 |
-
mask=(offs_m_curr[:, None] < seqlen_q) &
|
| 555 |
-
(offs_d[None, :] < headdim))
|
| 556 |
# increment pointers
|
| 557 |
dq_ptrs += BLOCK_M * stride_dqm
|
| 558 |
q_ptrs += BLOCK_M * stride_qm
|
|
@@ -562,28 +481,8 @@ def _bwd_kernel_one_col_block(
|
|
| 562 |
# write-back
|
| 563 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 564 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
if EVEN_N & EVEN_M:
|
| 568 |
-
if EVEN_HEADDIM:
|
| 569 |
-
tl.store(dv_ptrs, dv)
|
| 570 |
-
tl.store(dk_ptrs, dk)
|
| 571 |
-
else:
|
| 572 |
-
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
| 573 |
-
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
| 574 |
-
else:
|
| 575 |
-
if EVEN_HEADDIM:
|
| 576 |
-
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
| 577 |
-
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
| 578 |
-
else:
|
| 579 |
-
tl.store(dv_ptrs,
|
| 580 |
-
dv,
|
| 581 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
| 582 |
-
(offs_d[None, :] < headdim))
|
| 583 |
-
tl.store(dk_ptrs,
|
| 584 |
-
dk,
|
| 585 |
-
mask=(offs_n[:, None] < seqlen_k) &
|
| 586 |
-
(offs_d[None, :] < headdim))
|
| 587 |
|
| 588 |
|
| 589 |
def init_to_zero(name):
|
|
@@ -592,24 +491,8 @@ def init_to_zero(name):
|
|
| 592 |
|
| 593 |
@triton.autotune(
|
| 594 |
configs=[
|
| 595 |
-
triton.Config(
|
| 596 |
-
|
| 597 |
-
'BLOCK_M': 128,
|
| 598 |
-
'BLOCK_N': 128,
|
| 599 |
-
'SEQUENCE_PARALLEL': False
|
| 600 |
-
},
|
| 601 |
-
num_warps=8,
|
| 602 |
-
num_stages=1,
|
| 603 |
-
pre_hook=init_to_zero('DQ')),
|
| 604 |
-
triton.Config(
|
| 605 |
-
{
|
| 606 |
-
'BLOCK_M': 128,
|
| 607 |
-
'BLOCK_N': 128,
|
| 608 |
-
'SEQUENCE_PARALLEL': True
|
| 609 |
-
},
|
| 610 |
-
num_warps=8,
|
| 611 |
-
num_stages=1,
|
| 612 |
-
pre_hook=init_to_zero('DQ')),
|
| 613 |
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
| 614 |
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
| 615 |
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
@@ -617,69 +500,37 @@ def init_to_zero(name):
|
|
| 617 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 618 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 619 |
],
|
| 620 |
-
key=[
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 624 |
)
|
| 625 |
-
@triton.heuristics({
|
| 626 |
-
'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0,
|
| 627 |
-
'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0,
|
| 628 |
-
'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM'],
|
| 629 |
-
})
|
| 630 |
@triton.jit
|
| 631 |
def _bwd_kernel(
|
| 632 |
-
Q,
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
Bias,
|
| 636 |
-
DO,
|
| 637 |
-
DQ,
|
| 638 |
-
DK,
|
| 639 |
-
DV,
|
| 640 |
-
LSE,
|
| 641 |
-
D,
|
| 642 |
softmax_scale,
|
| 643 |
-
stride_qb,
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
stride_bh,
|
| 654 |
-
stride_bm,
|
| 655 |
-
stride_dob,
|
| 656 |
-
stride_doh,
|
| 657 |
-
stride_dom,
|
| 658 |
-
stride_dqb,
|
| 659 |
-
stride_dqh,
|
| 660 |
-
stride_dqm,
|
| 661 |
-
stride_dkb,
|
| 662 |
-
stride_dkh,
|
| 663 |
-
stride_dkn,
|
| 664 |
-
stride_dvb,
|
| 665 |
-
stride_dvh,
|
| 666 |
-
stride_dvn,
|
| 667 |
-
nheads,
|
| 668 |
-
seqlen_q,
|
| 669 |
-
seqlen_k,
|
| 670 |
-
seqlen_q_rounded,
|
| 671 |
-
headdim,
|
| 672 |
-
CACHE_KEY_SEQLEN_Q,
|
| 673 |
-
CACHE_KEY_SEQLEN_K,
|
| 674 |
BIAS_TYPE: tl.constexpr,
|
| 675 |
IS_CAUSAL: tl.constexpr,
|
| 676 |
BLOCK_HEADDIM: tl.constexpr,
|
| 677 |
SEQUENCE_PARALLEL: tl.constexpr,
|
| 678 |
-
EVEN_M: tl.constexpr,
|
| 679 |
-
|
| 680 |
-
EVEN_HEADDIM: tl.constexpr,
|
| 681 |
-
BLOCK_M: tl.constexpr,
|
| 682 |
-
BLOCK_N: tl.constexpr,
|
| 683 |
):
|
| 684 |
off_hb = tl.program_id(1)
|
| 685 |
off_b = off_hb // nheads
|
|
@@ -700,72 +551,40 @@ def _bwd_kernel(
|
|
| 700 |
if not SEQUENCE_PARALLEL:
|
| 701 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
| 702 |
for start_n in range(0, num_block_n):
|
| 703 |
-
_bwd_kernel_one_col_block(
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
stride_dom,
|
| 720 |
-
stride_dqm,
|
| 721 |
-
stride_dkn,
|
| 722 |
-
stride_dvn,
|
| 723 |
-
seqlen_q,
|
| 724 |
-
seqlen_k,
|
| 725 |
-
headdim,
|
| 726 |
-
ATOMIC_ADD=False,
|
| 727 |
-
BIAS_TYPE=BIAS_TYPE,
|
| 728 |
-
IS_CAUSAL=IS_CAUSAL,
|
| 729 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 730 |
-
EVEN_M=EVEN_M,
|
| 731 |
-
EVEN_N=EVEN_N,
|
| 732 |
-
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 733 |
-
BLOCK_M=BLOCK_M,
|
| 734 |
-
BLOCK_N=BLOCK_N)
|
| 735 |
else:
|
| 736 |
start_n = tl.program_id(0)
|
| 737 |
-
_bwd_kernel_one_col_block(
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
stride_dom,
|
| 754 |
-
stride_dqm,
|
| 755 |
-
stride_dkn,
|
| 756 |
-
stride_dvn,
|
| 757 |
-
seqlen_q,
|
| 758 |
-
seqlen_k,
|
| 759 |
-
headdim,
|
| 760 |
-
ATOMIC_ADD=True,
|
| 761 |
-
BIAS_TYPE=BIAS_TYPE,
|
| 762 |
-
IS_CAUSAL=IS_CAUSAL,
|
| 763 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 764 |
-
EVEN_M=EVEN_M,
|
| 765 |
-
EVEN_N=EVEN_N,
|
| 766 |
-
EVEN_HEADDIM=EVEN_HEADDIM,
|
| 767 |
-
BLOCK_M=BLOCK_M,
|
| 768 |
-
BLOCK_N=BLOCK_N)
|
| 769 |
|
| 770 |
|
| 771 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
@@ -776,8 +595,7 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
| 776 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
| 777 |
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
| 778 |
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
| 779 |
-
assert q.dtype in [torch.float16,
|
| 780 |
-
torch.bfloat16], 'Only support fp16 and bf16'
|
| 781 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
| 782 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 783 |
|
|
@@ -796,86 +614,40 @@ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
| 796 |
else:
|
| 797 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
| 798 |
' or (seqlen_q, seqlen_k)')
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
elif bias.shape[:2] == (batch, 1):
|
| 802 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
| 803 |
-
elif bias.shape[:2] == (1, 1):
|
| 804 |
-
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
| 805 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
| 806 |
-
assert bias.shape[:2] == (
|
| 807 |
-
batch, nheads
|
| 808 |
-
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
| 809 |
-
assert bias is not None # for type checking
|
| 810 |
-
bias_strides = (bias.stride(0), bias.stride(1),
|
| 811 |
-
bias.stride(2)) if has_bias else (0, 0, 0)
|
| 812 |
|
| 813 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 814 |
-
lse = torch.empty((batch, nheads, seqlen_q_rounded),
|
| 815 |
-
|
| 816 |
-
dtype=torch.float32)
|
| 817 |
-
tmp = torch.empty((batch, nheads, seqlen_q_rounded),
|
| 818 |
-
device=q.device,
|
| 819 |
-
dtype=torch.float32)
|
| 820 |
o = torch.empty_like(q)
|
| 821 |
|
| 822 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
| 826 |
-
_fwd_kernel[grid](
|
| 827 |
-
q,
|
| 828 |
-
|
| 829 |
-
v,
|
| 830 |
-
bias,
|
| 831 |
-
o,
|
| 832 |
-
lse,
|
| 833 |
-
tmp,
|
| 834 |
softmax_scale,
|
| 835 |
-
q.stride(0),
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
k.stride(0),
|
| 839 |
-
k.stride(2),
|
| 840 |
-
k.stride(1),
|
| 841 |
-
v.stride(0),
|
| 842 |
-
v.stride(2),
|
| 843 |
-
v.stride(1),
|
| 844 |
*bias_strides,
|
| 845 |
-
o.stride(0),
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
nheads,
|
| 849 |
-
seqlen_q,
|
| 850 |
-
seqlen_k,
|
| 851 |
-
seqlen_q_rounded,
|
| 852 |
-
d,
|
| 853 |
-
seqlen_q // 32,
|
| 854 |
-
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
| 855 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 856 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 857 |
-
bias_type,
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
# num_warps=num_warps,
|
| 862 |
-
# num_stages=1,
|
| 863 |
)
|
| 864 |
return o, lse, softmax_scale # softmax_scale could have been updated
|
| 865 |
|
| 866 |
|
| 867 |
-
def _flash_attn_backward(do,
|
| 868 |
-
q,
|
| 869 |
-
k,
|
| 870 |
-
v,
|
| 871 |
-
o,
|
| 872 |
-
lse,
|
| 873 |
-
dq,
|
| 874 |
-
dk,
|
| 875 |
-
dv,
|
| 876 |
-
bias=None,
|
| 877 |
-
causal=False,
|
| 878 |
-
softmax_scale=None):
|
| 879 |
# Make sure that the last dimension is contiguous
|
| 880 |
if do.stride(-1) != 1:
|
| 881 |
do = do.contiguous()
|
|
@@ -894,23 +666,13 @@ def _flash_attn_backward(do,
|
|
| 894 |
# delta = torch.zeros_like(lse)
|
| 895 |
|
| 896 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 897 |
-
grid = lambda META: (triton.cdiv(seqlen_q, META[
|
| 898 |
-
_bwd_preprocess_do_o_dot[grid](
|
| 899 |
-
o,
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
o.stride(1),
|
| 905 |
-
do.stride(0),
|
| 906 |
-
do.stride(2),
|
| 907 |
-
do.stride(1),
|
| 908 |
-
nheads,
|
| 909 |
-
seqlen_q,
|
| 910 |
-
seqlen_q_rounded,
|
| 911 |
-
d,
|
| 912 |
-
BLOCK_M=128,
|
| 913 |
-
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 914 |
)
|
| 915 |
|
| 916 |
has_bias = bias is not None
|
|
@@ -927,71 +689,32 @@ def _flash_attn_backward(do,
|
|
| 927 |
else:
|
| 928 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
| 929 |
' or (seqlen_q, seqlen_k)')
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
elif bias.shape[:2] == (batch, 1):
|
| 933 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
| 934 |
-
elif bias.shape[:2] == (1, 1):
|
| 935 |
-
bias = repeat(bias, '1 h ... -> b h ...', b=batch)
|
| 936 |
-
bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads)
|
| 937 |
-
assert bias.shape[:2] == (
|
| 938 |
-
batch, nheads
|
| 939 |
-
), f'First 2 dimensions of bias must be broadcastible to (batch, nheads) = ({batch, nheads}). Bias has shape: {bias.shape}'
|
| 940 |
-
assert bias is not None # type checking
|
| 941 |
-
bias_strides = (bias.stride(0), bias.stride(1),
|
| 942 |
-
bias.stride(2)) if has_bias else (0, 0, 0)
|
| 943 |
|
| 944 |
# BLOCK_M = 128
|
| 945 |
# BLOCK_N = 64
|
| 946 |
# num_warps = 4
|
| 947 |
-
grid = lambda META: (triton.cdiv(seqlen_k, META[
|
| 948 |
-
|
| 949 |
-
_bwd_kernel[grid](
|
| 950 |
-
q,
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
bias,
|
| 954 |
-
do,
|
| 955 |
-
dq_accum,
|
| 956 |
-
dk,
|
| 957 |
-
dv,
|
| 958 |
-
lse,
|
| 959 |
-
delta,
|
| 960 |
softmax_scale,
|
| 961 |
-
q.stride(0),
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
k.stride(0),
|
| 965 |
-
k.stride(2),
|
| 966 |
-
k.stride(1),
|
| 967 |
-
v.stride(0),
|
| 968 |
-
v.stride(2),
|
| 969 |
-
v.stride(1),
|
| 970 |
*bias_strides,
|
| 971 |
-
do.stride(0),
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
dk.stride(0),
|
| 978 |
-
dk.stride(2),
|
| 979 |
-
dk.stride(1),
|
| 980 |
-
dv.stride(0),
|
| 981 |
-
dv.stride(2),
|
| 982 |
-
dv.stride(1),
|
| 983 |
-
nheads,
|
| 984 |
-
seqlen_q,
|
| 985 |
-
seqlen_k,
|
| 986 |
-
seqlen_q_rounded,
|
| 987 |
-
d,
|
| 988 |
-
seqlen_q // 32,
|
| 989 |
-
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
| 990 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 991 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 992 |
-
bias_type,
|
| 993 |
-
causal,
|
| 994 |
-
BLOCK_HEADDIM,
|
| 995 |
# SEQUENCE_PARALLEL=False,
|
| 996 |
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
| 997 |
# num_warps=num_warps,
|
|
@@ -1000,31 +723,23 @@ def _flash_attn_backward(do,
|
|
| 1000 |
dq.copy_(dq_accum)
|
| 1001 |
|
| 1002 |
|
| 1003 |
-
class
|
| 1004 |
|
| 1005 |
@staticmethod
|
| 1006 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
| 1007 |
-
"""
|
| 1008 |
-
|
| 1009 |
-
Args:
|
| 1010 |
-
ctx: autograd context
|
| 1011 |
qkv: (batch, seqlen, 3, nheads, headdim)
|
| 1012 |
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
| 1013 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
| 1014 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
| 1015 |
-
causal (bool): whether to incorporate causal attention masking
|
| 1016 |
-
softmax_scale (float, optional): scale factor for softmax
|
| 1017 |
"""
|
| 1018 |
# Make sure that the last dimension is contiguous
|
| 1019 |
if qkv.stride(-1) != 1:
|
| 1020 |
qkv = qkv.contiguous()
|
| 1021 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 1022 |
-
qkv[:, :, 0],
|
| 1023 |
-
|
| 1024 |
-
|
| 1025 |
-
bias=bias,
|
| 1026 |
-
causal=causal,
|
| 1027 |
-
softmax_scale=softmax_scale)
|
| 1028 |
ctx.save_for_backward(qkv, o, lse, bias)
|
| 1029 |
ctx.causal = causal
|
| 1030 |
return o
|
|
@@ -1032,53 +747,75 @@ class _FlashAttnQKVPackedFunc(torch.autograd.Function):
|
|
| 1032 |
@staticmethod
|
| 1033 |
def backward(ctx, do):
|
| 1034 |
qkv, o, lse, bias = ctx.saved_tensors
|
| 1035 |
-
assert not ctx.needs_input_grad[
|
| 1036 |
-
1], 'FlashAttention does not support bias gradient yet'
|
| 1037 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 1038 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 1039 |
with torch.inference_mode():
|
| 1040 |
dqkv = torch.empty_like(qkv)
|
| 1041 |
-
_flash_attn_backward(do,
|
| 1042 |
-
|
| 1043 |
-
|
| 1044 |
-
qkv[:, :, 2],
|
| 1045 |
-
o,
|
| 1046 |
-
lse,
|
| 1047 |
-
dqkv[:, :, 0],
|
| 1048 |
-
dqkv[:, :, 1],
|
| 1049 |
-
dqkv[:, :, 2],
|
| 1050 |
-
bias=bias,
|
| 1051 |
-
causal=ctx.causal,
|
| 1052 |
-
softmax_scale=ctx.softmax_scale)
|
| 1053 |
return dqkv, None, None, None
|
| 1054 |
|
| 1055 |
|
| 1056 |
-
flash_attn_qkvpacked_func =
|
| 1057 |
|
| 1058 |
|
| 1059 |
-
class
|
| 1060 |
|
| 1061 |
@staticmethod
|
| 1062 |
-
def forward(ctx, q,
|
| 1063 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1064 |
|
| 1065 |
-
|
| 1066 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1067 |
q: (batch_size, seqlen_q, nheads, headdim)
|
| 1068 |
-
k: (batch_size, seqlen_k, nheads, headdim)
|
| 1069 |
-
v: (batch_size, seqlen_k, nheads, headdim)
|
| 1070 |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 1071 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 1072 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 1073 |
-
causal (bool): whether to incorporate causal attention masking
|
| 1074 |
-
softmax_scale (float, optional): scale factor for softmax
|
| 1075 |
"""
|
| 1076 |
# Make sure that the last dimension is contiguous
|
| 1077 |
-
q, k, v = [
|
| 1078 |
-
x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]
|
| 1079 |
-
]
|
| 1080 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 1081 |
-
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
|
|
|
| 1082 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
| 1083 |
ctx.causal = causal
|
| 1084 |
return o
|
|
@@ -1086,27 +823,16 @@ class _FlashAttnFunc(torch.autograd.Function):
|
|
| 1086 |
@staticmethod
|
| 1087 |
def backward(ctx, do):
|
| 1088 |
q, k, v, o, lse, bias = ctx.saved_tensors
|
| 1089 |
-
assert not ctx.needs_input_grad[
|
| 1090 |
-
3], 'FlashAttention does not support bias gradient yet'
|
| 1091 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 1092 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 1093 |
with torch.inference_mode():
|
| 1094 |
dq = torch.empty_like(q)
|
| 1095 |
dk = torch.empty_like(k)
|
| 1096 |
dv = torch.empty_like(v)
|
| 1097 |
-
_flash_attn_backward(do,
|
| 1098 |
-
|
| 1099 |
-
k,
|
| 1100 |
-
v,
|
| 1101 |
-
o,
|
| 1102 |
-
lse,
|
| 1103 |
-
dq,
|
| 1104 |
-
dk,
|
| 1105 |
-
dv,
|
| 1106 |
-
bias=bias,
|
| 1107 |
-
causal=ctx.causal,
|
| 1108 |
-
softmax_scale=ctx.softmax_scale)
|
| 1109 |
return dq, dk, dv, None, None, None
|
| 1110 |
|
| 1111 |
|
| 1112 |
-
flash_attn_func =
|
|
|
|
| 1 |
# Copyright 2022 MosaicML Examples authors
|
| 2 |
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
|
| 4 |
+
"""
|
| 5 |
+
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
|
| 6 |
+
update imports to use 'triton_pre_mlir'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
*Experimental* implementation of FlashAttention in Triton.
|
| 9 |
+
Tested with triton==2.0.0.dev20221202.
|
| 10 |
+
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
|
| 11 |
+
other than 64:
|
| 12 |
+
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
|
| 13 |
+
We'll update this implementation with the new Triton backend once this is fixed.
|
| 14 |
+
|
| 15 |
We use the FlashAttention implementation from Phil Tillet a starting point.
|
| 16 |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
| 17 |
|
|
|
|
| 27 |
small batch size * nheads.
|
| 28 |
|
| 29 |
Caution:
|
| 30 |
+
- This is an *experimental* implementation. The forward pass should be quite robust but
|
| 31 |
+
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
| 32 |
+
- This implementation has only been tested on A100.
|
| 33 |
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
| 34 |
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
| 35 |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
| 36 |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
| 37 |
that there are none left for other head dimensions.
|
| 38 |
+
|
| 39 |
Differences between this Triton version and the CUDA version:
|
| 40 |
- Triton version doesn't support dropout.
|
| 41 |
+
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
| 42 |
+
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
| 43 |
+
than CUDA forward + backward.
|
| 44 |
+
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
| 45 |
+
- Triton version supports attention bias, while CUDA version doesn't.
|
| 46 |
"""
|
| 47 |
|
| 48 |
import math
|
| 49 |
|
| 50 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
import triton_pre_mlir as triton
|
| 53 |
+
import triton_pre_mlir.language as tl
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
| 57 |
+
# @triton.autotune(
|
| 58 |
+
# configs=[
|
| 59 |
+
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
| 60 |
+
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
| 61 |
+
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
| 62 |
+
# ],
|
| 63 |
+
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
| 64 |
+
# )
|
| 65 |
+
@triton.heuristics(
|
| 66 |
+
{
|
| 67 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 68 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 69 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 70 |
+
}
|
| 71 |
+
)
|
| 72 |
@triton.jit
|
| 73 |
def _fwd_kernel(
|
| 74 |
+
Q, K, V, Bias, Out,
|
| 75 |
+
Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
softmax_scale,
|
| 77 |
+
stride_qb, stride_qh, stride_qm,
|
| 78 |
+
stride_kb, stride_kh, stride_kn,
|
| 79 |
+
stride_vb, stride_vh, stride_vn,
|
| 80 |
+
stride_bb, stride_bh, stride_bm,
|
| 81 |
+
stride_ob, stride_oh, stride_om,
|
| 82 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
|
| 83 |
+
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
BIAS_TYPE: tl.constexpr,
|
| 85 |
IS_CAUSAL: tl.constexpr,
|
| 86 |
BLOCK_HEADDIM: tl.constexpr,
|
| 87 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
| 88 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
|
|
|
| 89 |
):
|
| 90 |
start_m = tl.program_id(0)
|
| 91 |
off_hb = tl.program_id(1)
|
|
|
|
| 102 |
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
| 103 |
# https://github.com/openai/triton/issues/741
|
| 104 |
# I'm seeing a tiny bit of difference (5-7us)
|
| 105 |
+
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
| 106 |
+
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
| 107 |
+
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
|
|
|
|
|
|
|
|
|
| 108 |
if BIAS_TYPE == 'vector':
|
| 109 |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
| 110 |
elif BIAS_TYPE == 'matrix':
|
| 111 |
+
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
|
|
|
|
|
|
|
|
|
| 112 |
# initialize pointer to m and l
|
| 113 |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
| 114 |
+
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 115 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
| 116 |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
| 117 |
# load q: it will stay in SRAM throughout
|
| 118 |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
|
|
|
| 126 |
if EVEN_HEADDIM:
|
| 127 |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
| 128 |
else:
|
| 129 |
+
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
|
|
|
|
|
| 130 |
other=0.0)
|
| 131 |
# loop over k, v and update accumulator
|
| 132 |
+
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
|
|
|
| 133 |
for start_n in range(0, end_n, BLOCK_N):
|
| 134 |
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 135 |
# -- compute qk ----
|
|
|
|
| 137 |
if EVEN_HEADDIM:
|
| 138 |
k = tl.load(k_ptrs + start_n * stride_kn)
|
| 139 |
else:
|
| 140 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
|
|
| 141 |
else:
|
| 142 |
if EVEN_HEADDIM:
|
| 143 |
+
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
|
|
|
|
| 144 |
other=0.0)
|
| 145 |
else:
|
| 146 |
k = tl.load(k_ptrs + start_n * stride_kn,
|
| 147 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
| 148 |
other=0.0)
|
| 149 |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
| 150 |
qk += tl.dot(q, k, trans_b=True)
|
| 151 |
# Trying to combine the two masks seem to make the result wrong
|
| 152 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 153 |
+
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
|
|
|
| 154 |
if IS_CAUSAL:
|
| 155 |
+
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
|
|
|
| 156 |
if BIAS_TYPE != 'none':
|
| 157 |
if BIAS_TYPE == 'vector':
|
| 158 |
if EVEN_N:
|
| 159 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 160 |
else:
|
| 161 |
+
bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32)
|
|
|
|
|
|
|
| 162 |
bias = bias[None, :]
|
| 163 |
elif BIAS_TYPE == 'matrix':
|
| 164 |
if EVEN_M & EVEN_N:
|
| 165 |
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
| 166 |
else:
|
| 167 |
bias = tl.load(b_ptrs + start_n,
|
| 168 |
+
mask=(offs_m[:, None] < seqlen_q)
|
| 169 |
+
& ((start_n + offs_n)[None, :] < seqlen_k),
|
| 170 |
other=0.0).to(tl.float32)
|
|
|
|
|
|
|
|
|
|
| 171 |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
| 172 |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
| 173 |
# to multiply with softmax_scale here.
|
|
|
|
| 192 |
if EVEN_HEADDIM:
|
| 193 |
v = tl.load(v_ptrs + start_n * stride_vn)
|
| 194 |
else:
|
| 195 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
|
|
|
|
|
| 196 |
else:
|
| 197 |
if EVEN_HEADDIM:
|
| 198 |
+
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
|
|
|
|
| 199 |
other=0.0)
|
| 200 |
else:
|
| 201 |
v = tl.load(v_ptrs + start_n * stride_vn,
|
| 202 |
+
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
| 203 |
other=0.0)
|
| 204 |
p = p.to(v.dtype)
|
| 205 |
acc_o += tl.dot(p, v)
|
|
|
|
| 221 |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
| 222 |
tl.store(lse_ptrs, lse_i)
|
| 223 |
# initialize pointers to output
|
| 224 |
+
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 225 |
+
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
|
|
|
| 226 |
if EVEN_M:
|
| 227 |
if EVEN_HEADDIM:
|
| 228 |
tl.store(out_ptrs, acc_o)
|
|
|
|
| 232 |
if EVEN_HEADDIM:
|
| 233 |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
| 234 |
else:
|
| 235 |
+
tl.store(out_ptrs, acc_o,
|
| 236 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
|
|
|
|
|
| 237 |
|
| 238 |
|
| 239 |
@triton.jit
|
| 240 |
def _bwd_preprocess_do_o_dot(
|
| 241 |
+
Out, DO, Delta,
|
| 242 |
+
stride_ob, stride_oh, stride_om,
|
| 243 |
+
stride_dob, stride_doh, stride_dom,
|
| 244 |
+
nheads, seqlen_q, seqlen_q_rounded, headdim,
|
| 245 |
+
BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
):
|
| 247 |
start_m = tl.program_id(0)
|
| 248 |
off_hb = tl.program_id(1)
|
|
|
|
| 252 |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 253 |
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
| 254 |
# load
|
| 255 |
+
o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
|
| 256 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
| 257 |
+
do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
|
| 258 |
+
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
delta = tl.sum(o * do, axis=1)
|
| 260 |
# write-back
|
| 261 |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
| 262 |
|
| 263 |
|
| 264 |
+
@triton.jit
|
| 265 |
+
def _bwd_store_dk_dv(
|
| 266 |
+
dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
| 267 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
| 268 |
+
):
|
| 269 |
+
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
|
| 270 |
+
# if we just call tl.store(dv_ptrs), there's a race condition
|
| 271 |
+
if EVEN_N & EVEN_M:
|
| 272 |
+
if EVEN_HEADDIM:
|
| 273 |
+
tl.store(dv_ptrs, dv)
|
| 274 |
+
tl.store(dk_ptrs, dk)
|
| 275 |
+
else:
|
| 276 |
+
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
| 277 |
+
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
| 278 |
+
else:
|
| 279 |
+
if EVEN_HEADDIM:
|
| 280 |
+
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
| 281 |
+
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
| 282 |
+
else:
|
| 283 |
+
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 284 |
+
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
| 285 |
+
|
| 286 |
+
|
| 287 |
@triton.jit
|
| 288 |
def _bwd_kernel_one_col_block(
|
| 289 |
start_n,
|
| 290 |
+
Q, K, V, Bias,
|
| 291 |
+
DO, DQ, DK, DV,
|
| 292 |
+
LSE, D,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
softmax_scale,
|
| 294 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
| 295 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
| 296 |
+
seqlen_q, seqlen_k, headdim,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
ATOMIC_ADD: tl.constexpr,
|
| 298 |
BIAS_TYPE: tl.constexpr,
|
| 299 |
IS_CAUSAL: tl.constexpr,
|
| 300 |
BLOCK_HEADDIM: tl.constexpr,
|
| 301 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
| 302 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
|
|
|
| 303 |
):
|
| 304 |
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
| 305 |
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
|
|
|
| 318 |
b_ptrs = Bias + offs_n
|
| 319 |
elif BIAS_TYPE == 'matrix':
|
| 320 |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
|
|
|
|
|
|
| 321 |
# initialize dv and dk
|
| 322 |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 323 |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
| 324 |
+
# There seems to be some problem with Triton pipelining that makes results wrong for
|
| 325 |
+
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
|
| 326 |
+
# may have zero step, and pipelining with the bias matrix could screw it up.
|
| 327 |
+
# So we just exit early.
|
| 328 |
+
if begin_m >= seqlen_q:
|
| 329 |
+
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 330 |
+
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 331 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
| 332 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
| 333 |
+
return
|
| 334 |
# k and v stay in SRAM throughout
|
| 335 |
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
| 336 |
# if we just call tl.load(k_ptrs), we get the wrong output!
|
|
|
|
| 346 |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 347 |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
| 348 |
else:
|
| 349 |
+
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
|
|
|
| 350 |
other=0.0)
|
| 351 |
+
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
|
|
|
|
|
| 352 |
other=0.0)
|
| 353 |
# loop over rows
|
| 354 |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
|
|
|
| 361 |
q = tl.load(q_ptrs)
|
| 362 |
else:
|
| 363 |
if EVEN_HEADDIM:
|
| 364 |
+
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
|
|
|
|
|
|
| 365 |
else:
|
| 366 |
+
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
| 367 |
+
& (offs_d[None, :] < headdim), other=0.0)
|
|
|
|
|
|
|
| 368 |
# recompute p = softmax(qk, dim=-1).T
|
| 369 |
qk = tl.dot(q, k, trans_b=True)
|
| 370 |
# Trying to combine the two masks seem to make the result wrong
|
| 371 |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
| 372 |
+
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
| 373 |
if IS_CAUSAL:
|
| 374 |
+
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
|
|
|
| 375 |
if BIAS_TYPE != 'none':
|
| 376 |
+
tl.debug_barrier() # Race condition otherwise
|
| 377 |
if BIAS_TYPE == 'vector':
|
| 378 |
if EVEN_N:
|
| 379 |
bias = tl.load(b_ptrs).to(tl.float32)
|
| 380 |
else:
|
| 381 |
+
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
|
|
|
| 382 |
bias = bias[None, :]
|
| 383 |
elif BIAS_TYPE == 'matrix':
|
| 384 |
if EVEN_M & EVEN_N:
|
| 385 |
bias = tl.load(b_ptrs).to(tl.float32)
|
| 386 |
else:
|
| 387 |
bias = tl.load(b_ptrs,
|
| 388 |
+
mask=(offs_m_curr[:, None] < seqlen_q)
|
| 389 |
+
& (offs_n[None, :] < seqlen_k),
|
| 390 |
other=0.0).to(tl.float32)
|
|
|
|
|
|
|
|
|
|
| 391 |
qk = qk * softmax_scale + bias
|
| 392 |
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
| 393 |
# Also wrong for headdim=64.
|
|
|
|
| 407 |
do = tl.load(do_ptrs)
|
| 408 |
else:
|
| 409 |
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
| 410 |
+
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
| 411 |
+
& (offs_d[None, :] < headdim), other=0.0)
|
|
|
|
|
|
|
| 412 |
# if EVEN_M:
|
| 413 |
# if EVEN_HEADDIM:
|
| 414 |
# do = tl.load(do_ptrs)
|
|
|
|
| 440 |
# compute dk = dot(ds.T, q)
|
| 441 |
dk += tl.dot(ds, q, trans_a=True)
|
| 442 |
# compute dq
|
| 443 |
+
if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix'
|
| 444 |
+
tl.debug_barrier()
|
| 445 |
if not ATOMIC_ADD:
|
| 446 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 447 |
+
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
| 448 |
dq += tl.dot(ds, k)
|
| 449 |
+
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
| 450 |
else:
|
| 451 |
if EVEN_HEADDIM:
|
| 452 |
+
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
|
| 453 |
+
eviction_policy="evict_last")
|
|
|
|
|
|
|
| 454 |
dq += tl.dot(ds, k)
|
| 455 |
+
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
|
| 456 |
+
eviction_policy="evict_last")
|
|
|
|
|
|
|
| 457 |
else:
|
| 458 |
dq = tl.load(dq_ptrs,
|
| 459 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 460 |
+
other=0.0, eviction_policy="evict_last")
|
|
|
|
|
|
|
| 461 |
dq += tl.dot(ds, k)
|
| 462 |
+
tl.store(dq_ptrs, dq,
|
| 463 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
| 464 |
+
eviction_policy="evict_last")
|
|
|
|
|
|
|
| 465 |
else: # If we're parallelizing across the seqlen_k dimension
|
| 466 |
dq = tl.dot(ds, k)
|
| 467 |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
| 468 |
tl.atomic_add(dq_ptrs, dq)
|
| 469 |
else:
|
| 470 |
if EVEN_HEADDIM:
|
| 471 |
+
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
|
|
|
|
|
|
| 472 |
else:
|
| 473 |
+
tl.atomic_add(dq_ptrs, dq,
|
| 474 |
+
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
|
|
|
|
|
| 475 |
# increment pointers
|
| 476 |
dq_ptrs += BLOCK_M * stride_dqm
|
| 477 |
q_ptrs += BLOCK_M * stride_qm
|
|
|
|
| 481 |
# write-back
|
| 482 |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
| 483 |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
| 484 |
+
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim,
|
| 485 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
|
| 488 |
def init_to_zero(name):
|
|
|
|
| 491 |
|
| 492 |
@triton.autotune(
|
| 493 |
configs=[
|
| 494 |
+
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 495 |
+
triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 496 |
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
| 497 |
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
| 498 |
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
|
|
| 500 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 501 |
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
| 502 |
],
|
| 503 |
+
key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
|
| 504 |
+
)
|
| 505 |
+
@triton.heuristics(
|
| 506 |
+
{
|
| 507 |
+
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
| 508 |
+
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
| 509 |
+
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
| 510 |
+
}
|
| 511 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
@triton.jit
|
| 513 |
def _bwd_kernel(
|
| 514 |
+
Q, K, V, Bias,
|
| 515 |
+
DO, DQ, DK, DV,
|
| 516 |
+
LSE, D,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
softmax_scale,
|
| 518 |
+
stride_qb, stride_qh, stride_qm,
|
| 519 |
+
stride_kb, stride_kh, stride_kn,
|
| 520 |
+
stride_vb, stride_vh, stride_vn,
|
| 521 |
+
stride_bb, stride_bh, stride_bm,
|
| 522 |
+
stride_dob, stride_doh, stride_dom,
|
| 523 |
+
stride_dqb, stride_dqh, stride_dqm,
|
| 524 |
+
stride_dkb, stride_dkh, stride_dkn,
|
| 525 |
+
stride_dvb, stride_dvh, stride_dvn,
|
| 526 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
|
| 527 |
+
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 528 |
BIAS_TYPE: tl.constexpr,
|
| 529 |
IS_CAUSAL: tl.constexpr,
|
| 530 |
BLOCK_HEADDIM: tl.constexpr,
|
| 531 |
SEQUENCE_PARALLEL: tl.constexpr,
|
| 532 |
+
EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
|
| 533 |
+
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
|
|
|
|
|
|
|
|
|
|
| 534 |
):
|
| 535 |
off_hb = tl.program_id(1)
|
| 536 |
off_b = off_hb // nheads
|
|
|
|
| 551 |
if not SEQUENCE_PARALLEL:
|
| 552 |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
| 553 |
for start_n in range(0, num_block_n):
|
| 554 |
+
_bwd_kernel_one_col_block(
|
| 555 |
+
start_n,
|
| 556 |
+
Q, K, V, Bias,
|
| 557 |
+
DO, DQ, DK, DV,
|
| 558 |
+
LSE, D,
|
| 559 |
+
softmax_scale,
|
| 560 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
| 561 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
| 562 |
+
seqlen_q, seqlen_k, headdim,
|
| 563 |
+
ATOMIC_ADD=False,
|
| 564 |
+
BIAS_TYPE=BIAS_TYPE,
|
| 565 |
+
IS_CAUSAL=IS_CAUSAL,
|
| 566 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 567 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
|
| 568 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
|
| 569 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 570 |
else:
|
| 571 |
start_n = tl.program_id(0)
|
| 572 |
+
_bwd_kernel_one_col_block(
|
| 573 |
+
start_n,
|
| 574 |
+
Q, K, V, Bias,
|
| 575 |
+
DO, DQ, DK, DV,
|
| 576 |
+
LSE, D,
|
| 577 |
+
softmax_scale,
|
| 578 |
+
stride_qm, stride_kn, stride_vn, stride_bm,
|
| 579 |
+
stride_dom, stride_dqm, stride_dkn, stride_dvn,
|
| 580 |
+
seqlen_q, seqlen_k, headdim,
|
| 581 |
+
ATOMIC_ADD=True,
|
| 582 |
+
BIAS_TYPE=BIAS_TYPE,
|
| 583 |
+
IS_CAUSAL=IS_CAUSAL,
|
| 584 |
+
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
| 585 |
+
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
|
| 586 |
+
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
|
| 587 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
|
| 589 |
|
| 590 |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
|
|
| 595 |
assert v.shape == (batch, seqlen_k, nheads, d)
|
| 596 |
assert d <= 128, 'FlashAttention only support head dimensions up to 128'
|
| 597 |
assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
|
| 598 |
+
assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
|
|
|
|
| 599 |
assert q.is_cuda and k.is_cuda and v.is_cuda
|
| 600 |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
| 601 |
|
|
|
|
| 614 |
else:
|
| 615 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
| 616 |
' or (seqlen_q, seqlen_k)')
|
| 617 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 618 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
|
| 620 |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
| 621 |
+
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
| 622 |
+
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
o = torch.empty_like(q)
|
| 624 |
|
| 625 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 626 |
+
BLOCK = 128
|
| 627 |
+
num_warps = 4 if d <= 64 else 8
|
| 628 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 629 |
+
_fwd_kernel[grid](
|
| 630 |
+
q, k, v, bias, o,
|
| 631 |
+
lse, tmp,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
softmax_scale,
|
| 633 |
+
q.stride(0), q.stride(2), q.stride(1),
|
| 634 |
+
k.stride(0), k.stride(2), k.stride(1),
|
| 635 |
+
v.stride(0), v.stride(2), v.stride(1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 636 |
*bias_strides,
|
| 637 |
+
o.stride(0), o.stride(2), o.stride(1),
|
| 638 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
|
| 639 |
+
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 641 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 642 |
+
bias_type, causal, BLOCK_HEADDIM,
|
| 643 |
+
BLOCK_M=BLOCK, BLOCK_N=BLOCK,
|
| 644 |
+
num_warps=num_warps,
|
| 645 |
+
num_stages=1,
|
|
|
|
|
|
|
| 646 |
)
|
| 647 |
return o, lse, softmax_scale # softmax_scale could have been updated
|
| 648 |
|
| 649 |
|
| 650 |
+
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
# Make sure that the last dimension is contiguous
|
| 652 |
if do.stride(-1) != 1:
|
| 653 |
do = do.contiguous()
|
|
|
|
| 666 |
# delta = torch.zeros_like(lse)
|
| 667 |
|
| 668 |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
| 669 |
+
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
| 670 |
+
_bwd_preprocess_do_o_dot[grid](
|
| 671 |
+
o, do, delta,
|
| 672 |
+
o.stride(0), o.stride(2), o.stride(1),
|
| 673 |
+
do.stride(0), do.stride(2), do.stride(1),
|
| 674 |
+
nheads, seqlen_q, seqlen_q_rounded, d,
|
| 675 |
+
BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
)
|
| 677 |
|
| 678 |
has_bias = bias is not None
|
|
|
|
| 689 |
else:
|
| 690 |
raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)'
|
| 691 |
' or (seqlen_q, seqlen_k)')
|
| 692 |
+
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
| 693 |
+
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 694 |
|
| 695 |
# BLOCK_M = 128
|
| 696 |
# BLOCK_N = 64
|
| 697 |
# num_warps = 4
|
| 698 |
+
grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
|
| 699 |
+
batch * nheads)
|
| 700 |
+
_bwd_kernel[grid](
|
| 701 |
+
q, k, v, bias,
|
| 702 |
+
do, dq_accum, dk, dv,
|
| 703 |
+
lse, delta,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
softmax_scale,
|
| 705 |
+
q.stride(0), q.stride(2), q.stride(1),
|
| 706 |
+
k.stride(0), k.stride(2), k.stride(1),
|
| 707 |
+
v.stride(0), v.stride(2), v.stride(1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
*bias_strides,
|
| 709 |
+
do.stride(0), do.stride(2), do.stride(1),
|
| 710 |
+
dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
|
| 711 |
+
dk.stride(0), dk.stride(2), dk.stride(1),
|
| 712 |
+
dv.stride(0), dv.stride(2), dv.stride(1),
|
| 713 |
+
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
|
| 714 |
+
seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
| 716 |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
| 717 |
+
bias_type, causal, BLOCK_HEADDIM,
|
|
|
|
|
|
|
| 718 |
# SEQUENCE_PARALLEL=False,
|
| 719 |
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
| 720 |
# num_warps=num_warps,
|
|
|
|
| 723 |
dq.copy_(dq_accum)
|
| 724 |
|
| 725 |
|
| 726 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
| 727 |
|
| 728 |
@staticmethod
|
| 729 |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
| 730 |
+
"""
|
|
|
|
|
|
|
|
|
|
| 731 |
qkv: (batch, seqlen, 3, nheads, headdim)
|
| 732 |
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
| 733 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
| 734 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
|
|
|
|
|
|
| 735 |
"""
|
| 736 |
# Make sure that the last dimension is contiguous
|
| 737 |
if qkv.stride(-1) != 1:
|
| 738 |
qkv = qkv.contiguous()
|
| 739 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 740 |
+
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal,
|
| 741 |
+
softmax_scale=softmax_scale
|
| 742 |
+
)
|
|
|
|
|
|
|
|
|
|
| 743 |
ctx.save_for_backward(qkv, o, lse, bias)
|
| 744 |
ctx.causal = causal
|
| 745 |
return o
|
|
|
|
| 747 |
@staticmethod
|
| 748 |
def backward(ctx, do):
|
| 749 |
qkv, o, lse, bias = ctx.saved_tensors
|
| 750 |
+
assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
|
|
|
|
| 751 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 752 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 753 |
with torch.inference_mode():
|
| 754 |
dqkv = torch.empty_like(qkv)
|
| 755 |
+
_flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
|
| 756 |
+
dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
|
| 757 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 758 |
return dqkv, None, None, None
|
| 759 |
|
| 760 |
|
| 761 |
+
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
| 762 |
|
| 763 |
|
| 764 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
| 765 |
|
| 766 |
@staticmethod
|
| 767 |
+
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
| 768 |
+
"""
|
| 769 |
+
q: (batch, seqlen_q, nheads, headdim)
|
| 770 |
+
kv: (batch, seqlen_k, 2, nheads, headdim)
|
| 771 |
+
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 772 |
+
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 773 |
+
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
| 774 |
+
"""
|
| 775 |
+
# Make sure that the last dimension is contiguous
|
| 776 |
+
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
| 777 |
+
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 778 |
+
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
|
| 779 |
+
)
|
| 780 |
+
ctx.save_for_backward(q, kv, o, lse, bias)
|
| 781 |
+
ctx.causal = causal
|
| 782 |
+
return o
|
| 783 |
+
|
| 784 |
+
@staticmethod
|
| 785 |
+
def backward(ctx, do):
|
| 786 |
+
q, kv, o, lse, bias = ctx.saved_tensors
|
| 787 |
+
if len(ctx.needs_input_grad) >= 3:
|
| 788 |
+
assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
|
| 789 |
+
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 790 |
+
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 791 |
+
with torch.inference_mode():
|
| 792 |
+
dq = torch.empty_like(q)
|
| 793 |
+
dkv = torch.empty_like(kv)
|
| 794 |
+
_flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse,
|
| 795 |
+
dq, dkv[:, :, 0], dkv[:, :, 1],
|
| 796 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
| 797 |
+
return dq, dkv, None, None, None
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
| 801 |
|
| 802 |
+
|
| 803 |
+
class FlashAttnFunc(torch.autograd.Function):
|
| 804 |
+
|
| 805 |
+
@staticmethod
|
| 806 |
+
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
| 807 |
+
"""
|
| 808 |
q: (batch_size, seqlen_q, nheads, headdim)
|
| 809 |
+
k, v: (batch_size, seqlen_k, nheads, headdim)
|
|
|
|
| 810 |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
| 811 |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
| 812 |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
|
|
|
|
|
|
| 813 |
"""
|
| 814 |
# Make sure that the last dimension is contiguous
|
| 815 |
+
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
|
|
|
|
|
|
| 816 |
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
| 817 |
+
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
|
| 818 |
+
)
|
| 819 |
ctx.save_for_backward(q, k, v, o, lse, bias)
|
| 820 |
ctx.causal = causal
|
| 821 |
return o
|
|
|
|
| 823 |
@staticmethod
|
| 824 |
def backward(ctx, do):
|
| 825 |
q, k, v, o, lse, bias = ctx.saved_tensors
|
| 826 |
+
assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
|
|
|
|
| 827 |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
| 828 |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
| 829 |
with torch.inference_mode():
|
| 830 |
dq = torch.empty_like(q)
|
| 831 |
dk = torch.empty_like(k)
|
| 832 |
dv = torch.empty_like(v)
|
| 833 |
+
_flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
|
| 834 |
+
bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 835 |
return dq, dk, dv, None, None, None
|
| 836 |
|
| 837 |
|
| 838 |
+
flash_attn_func = FlashAttnFunc.apply
|