Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- HuggingFaceTB/smoltalk2_everyday_convs_think
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- HuggingFaceTB/SmolLM3-3B-Base
|
| 9 |
+
---
|
| 10 |
+
# lukmanaj/smollm3-sft-colab-merged
|
| 11 |
+
|
| 12 |
+
**smollm3-sft-colab-merged** is a merged LoRA fine-tune of **[`HuggingFaceTB/SmolLM3-3B-Base`](https://huggingface.co/HuggingFaceTB/SmolLM3-3B-Base)** trained with SFT on **[`HuggingFaceTB/smoltalk2_everyday_convs_think`](https://huggingface.co/datasets/HuggingFaceTB/smoltalk2_everyday_convs_think)**, then merged into a single checkpoint for easy inference.
|
| 13 |
+
|
| 14 |
+
- **Use case:** conversational, reflective, everyday reasoning
|
| 15 |
+
- **Method:** SFT + LoRA → merged with `peft`’s `merge_and_unload`
|
| 16 |
+
- **Author:** [@lukmanaj](https://huggingface.co/lukmanaj)
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
## 🚀 Quick start
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from transformers import pipeline
|
| 24 |
+
|
| 25 |
+
question = "If you could instantly master any skill, what would it be and why?"
|
| 26 |
+
pipe = pipeline(
|
| 27 |
+
"text-generation",
|
| 28 |
+
model="lukmanaj/smollm3-sft-colab-merged",
|
| 29 |
+
device_map="auto"
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
out = pipe(
|
| 33 |
+
[{"role": "user", "content": question}],
|
| 34 |
+
max_new_tokens=128,
|
| 35 |
+
return_full_text=False,
|
| 36 |
+
do_sample=True
|
| 37 |
+
)[0]["generated_text"]
|
| 38 |
+
|
| 39 |
+
print(out)
|
| 40 |
+
```
|
| 41 |
+
> Tip: For CPU-only, drop device_map. For smaller memory, try torch_dtype="auto" and low_cpu_mem_usage=True in from_pretrained.
|
| 42 |
+
|
| 43 |
+
## 🧩 Training summary
|
| 44 |
+
Base model: HuggingFaceTB/SmolLM3-3B-Base
|
| 45 |
+
|
| 46 |
+
Dataset: HuggingFaceTB/smoltalk2_everyday_convs_think
|
| 47 |
+
|
| 48 |
+
Approach: Supervised Fine-Tuning (SFT) with LoRA adapters, then merged
|
| 49 |
+
|
| 50 |
+
Intended behavior: coherent, thoughtful conversational replies
|
| 51 |
+
|
| 52 |
+
Suggested hyperparameters (typical)
|
| 53 |
+
Optimizer: AdamW
|
| 54 |
+
|
| 55 |
+
LR: 2e-5
|
| 56 |
+
|
| 57 |
+
Scheduler: linear decay
|
| 58 |
+
|
| 59 |
+
Batch size (effective): 8
|
| 60 |
+
|
| 61 |
+
Epochs: 3
|
| 62 |
+
|
| 63 |
+
LoRA: rank 8, alpha 16, dropout 0.05
|
| 64 |
+
|
| 65 |
+
## 🔧 Reproduce the merge
|
| 66 |
+
The merged weights were produced with the following code:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
Copy code
|
| 70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 71 |
+
from peft import PeftModel
|
| 72 |
+
import torch
|
| 73 |
+
|
| 74 |
+
base = "HuggingFaceTB/SmolLM3-3B-Base"
|
| 75 |
+
adapters = "lukmanaj/smollm3-sft-colab"
|
| 76 |
+
|
| 77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
+
base, torch_dtype=torch.bfloat16, device_map="auto"
|
| 79 |
+
)
|
| 80 |
+
model = PeftModel.from_pretrained(model, adapters)
|
| 81 |
+
model = model.merge_and_unload() # bake LoRA into the base
|
| 82 |
+
|
| 83 |
+
tok = AutoTokenizer.from_pretrained(base, use_fast=True)
|
| 84 |
+
model.save_pretrained("./smollm3-sft-merged", safe_serialization=True)
|
| 85 |
+
tok.save_pretrained("./smollm3-sft-merged")
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## 🧠 Intended uses & limitations
|
| 89 |
+
Intended uses
|
| 90 |
+
|
| 91 |
+
- Dialogue agents
|
| 92 |
+
|
| 93 |
+
- Everyday reasoning / reflective Q&A
|
| 94 |
+
|
| 95 |
+
- Creative writing prompts
|
| 96 |
+
|
| 97 |
+
## Limitations
|
| 98 |
+
|
| 99 |
+
- May hallucinate facts
|
| 100 |
+
|
| 101 |
+
- Not aligned for safety-critical, medical, legal, or financial advice
|
| 102 |
+
|
| 103 |
+
- Output may contain biases from training data
|
| 104 |
+
|
| 105 |
+
## 💻 Framework versions
|
| 106 |
+
Library Version
|
| 107 |
+
TRL 0.23.1
|
| 108 |
+
Transformers 4.57.0
|
| 109 |
+
PyTorch 2.6.0+cu124
|
| 110 |
+
Datasets 4.1.1
|
| 111 |
+
Tokenizers 0.22.1
|
| 112 |
+
|
| 113 |
+
## 📚 Citations
|
| 114 |
+
TRL
|
| 115 |
+
|
| 116 |
+
```bibtex
|
| 117 |
+
@misc{vonwerra2022trl,
|
| 118 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 119 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
| 120 |
+
year = 2020,
|
| 121 |
+
journal = {GitHub repository},
|
| 122 |
+
publisher = {GitHub},
|
| 123 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 124 |
+
}
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## ❤️ Acknowledgements
|
| 128 |
+
Thanks to Hugging Face, TRL & PEFT maintainers, and the SmolLM3 team.
|