update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- esnli
|
| 7 |
+
metrics:
|
| 8 |
+
- f1
|
| 9 |
+
- accuracy
|
| 10 |
+
model-index:
|
| 11 |
+
- name: roberta-large-e-snli-classification-nli-base
|
| 12 |
+
results:
|
| 13 |
+
- task:
|
| 14 |
+
name: Text Classification
|
| 15 |
+
type: text-classification
|
| 16 |
+
dataset:
|
| 17 |
+
name: esnli
|
| 18 |
+
type: esnli
|
| 19 |
+
config: plain_text
|
| 20 |
+
split: validation
|
| 21 |
+
args: plain_text
|
| 22 |
+
metrics:
|
| 23 |
+
- name: F1
|
| 24 |
+
type: f1
|
| 25 |
+
value: 0.9258678577111056
|
| 26 |
+
- name: Accuracy
|
| 27 |
+
type: accuracy
|
| 28 |
+
value: 0.9260312944523471
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 32 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 33 |
+
|
| 34 |
+
# roberta-large-e-snli-classification-nli-base
|
| 35 |
+
|
| 36 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the esnli dataset.
|
| 37 |
+
It achieves the following results on the evaluation set:
|
| 38 |
+
- Loss: 0.2221
|
| 39 |
+
- F1: 0.9259
|
| 40 |
+
- Accuracy: 0.9260
|
| 41 |
+
|
| 42 |
+
## Model description
|
| 43 |
+
|
| 44 |
+
More information needed
|
| 45 |
+
|
| 46 |
+
## Intended uses & limitations
|
| 47 |
+
|
| 48 |
+
More information needed
|
| 49 |
+
|
| 50 |
+
## Training and evaluation data
|
| 51 |
+
|
| 52 |
+
More information needed
|
| 53 |
+
|
| 54 |
+
## Training procedure
|
| 55 |
+
|
| 56 |
+
### Training hyperparameters
|
| 57 |
+
|
| 58 |
+
The following hyperparameters were used during training:
|
| 59 |
+
- learning_rate: 1e-05
|
| 60 |
+
- train_batch_size: 64
|
| 61 |
+
- eval_batch_size: 64
|
| 62 |
+
- seed: 42
|
| 63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 64 |
+
- lr_scheduler_type: linear
|
| 65 |
+
- lr_scheduler_warmup_ratio: 0.05
|
| 66 |
+
- num_epochs: 3
|
| 67 |
+
- mixed_precision_training: Native AMP
|
| 68 |
+
|
| 69 |
+
### Training results
|
| 70 |
+
|
| 71 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|
| 72 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
|
| 73 |
+
| 0.9995 | 0.05 | 400 | 0.4236 | 0.8437 | 0.8465 |
|
| 74 |
+
| 0.4089 | 0.09 | 800 | 0.2961 | 0.8926 | 0.8933 |
|
| 75 |
+
| 0.3681 | 0.14 | 1200 | 0.2980 | 0.8914 | 0.8924 |
|
| 76 |
+
| 0.3467 | 0.19 | 1600 | 0.2872 | 0.8977 | 0.8990 |
|
| 77 |
+
| 0.324 | 0.23 | 2000 | 0.2506 | 0.9106 | 0.9110 |
|
| 78 |
+
| 0.3222 | 0.28 | 2400 | 0.2552 | 0.9132 | 0.9128 |
|
| 79 |
+
| 0.3138 | 0.33 | 2800 | 0.2379 | 0.9183 | 0.9183 |
|
| 80 |
+
| 0.3107 | 0.37 | 3200 | 0.2396 | 0.9152 | 0.9156 |
|
| 81 |
+
| 0.304 | 0.42 | 3600 | 0.2354 | 0.9174 | 0.9177 |
|
| 82 |
+
| 0.3027 | 0.47 | 4000 | 0.2360 | 0.9191 | 0.9191 |
|
| 83 |
+
| 0.2968 | 0.51 | 4400 | 0.2329 | 0.9182 | 0.9187 |
|
| 84 |
+
| 0.2888 | 0.56 | 4800 | 0.2462 | 0.9189 | 0.9196 |
|
| 85 |
+
| 0.2898 | 0.61 | 5200 | 0.2335 | 0.9206 | 0.9212 |
|
| 86 |
+
| 0.288 | 0.65 | 5600 | 0.2350 | 0.9220 | 0.9223 |
|
| 87 |
+
| 0.2746 | 0.7 | 6000 | 0.2208 | 0.9275 | 0.9278 |
|
| 88 |
+
| 0.2756 | 0.75 | 6400 | 0.2304 | 0.9209 | 0.9216 |
|
| 89 |
+
| 0.272 | 0.79 | 6800 | 0.2243 | 0.9237 | 0.9238 |
|
| 90 |
+
| 0.2809 | 0.84 | 7200 | 0.2176 | 0.9259 | 0.9261 |
|
| 91 |
+
| 0.2733 | 0.89 | 7600 | 0.2194 | 0.9271 | 0.9273 |
|
| 92 |
+
| 0.2723 | 0.93 | 8000 | 0.2221 | 0.9259 | 0.9260 |
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
### Framework versions
|
| 96 |
+
|
| 97 |
+
- Transformers 4.27.1
|
| 98 |
+
- Pytorch 1.12.1+cu113
|
| 99 |
+
- Datasets 2.10.1
|
| 100 |
+
- Tokenizers 0.13.2
|