thinkthinking commited on
Commit
9ea1c2c
Β·
verified Β·
1 Parent(s): 503a866

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -7
README.md CHANGED
@@ -1,21 +1,23 @@
1
  ---
2
  license: mit
3
  base_model:
4
- - inclusionAI/Ling-mini-base-2.0-20T
5
  pipeline_tag: text-generation
6
  library_name: transformers
7
  ---
 
8
  # Ring-mini-2.0
9
 
10
  <p align="center">
11
  <img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
12
  <p>
13
 
14
- <p align="center">πŸ€— <a href="https://huggingface.co/inclusionAI">Hugging Face</a>&nbsp&nbsp | &nbsp&nbspπŸ€– <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a></p>
15
 
16
  Today, we officially release Ring-mini-2.0 β€” a high-performance inference-oriented MoE model deeply optimized based on the Ling 2.0 architecture. With only 16B total parameters and 1.4B activated parameters, it achieves comprehensive reasoning capabilities comparable to dense models below the 10B scale. It excels particularly in logical reasoning, code generation, and mathematical tasks, while supporting 128K long-context processing and 300+ tokens/s high-speed generation.
17
 
18
  ## Enhanced Reasoning: Joint Training with SFT + RLVR + RLHF
 
19
  Built upon Ling-mini-2.0-base, Ring-mini-2.0 undergoes further training with Long-CoT SFT, more stable and continuous RLVR, and RLHF joint optimization, significantly improving the stability and generalization of complex reasoning. On multiple challenging benchmarks (LiveCodeBench, AIME 2025, GPQA, ARC-AGI-v1, etc.), it outperforms dense models below 10B and even rivals larger MoE models (e.g., gpt-oss-20B-medium) with comparable output lengths, particularly excelling in logical reasoning.
20
 
21
  <p align="center">
@@ -24,7 +26,9 @@ Built upon Ling-mini-2.0-base, Ring-mini-2.0 undergoes further training with Lon
24
  <p>
25
 
26
  ## High Sparsity, High-Speed Generation
 
27
  Inheriting the efficient MoE design of the Ling 2.0 series, Ring-mini-2.0 activates only 1.4B parameters and achieves performance equivalent to 7–8B dense models through architectural optimizations such as 1/32 expert activation ratio and MTP layers. Thanks to its low activation and high sparsity design, Ring-mini-2.0 delivers a throughput of 300+ tokens/s when deployed on H20. With Expert Dual Streaming inference optimization, this can be further boosted to 500+ tokens/s, significantly reducing inference costs for high-concurrency scenarios involving thinking models. Additionally, with YaRN extrapolation, it supports 128K long-context processing, achieving a relative speedup of up to 7x in long-output scenarios.
 
28
  <p align="center">
29
  <img src="https://mdn.alipayobjects.com/huamei_d2byvp/afts/img/gjJKSpFVphEAAAAAgdAAAAgADod9AQFr/original" width="1000"/>
30
  <p>
@@ -33,18 +37,52 @@ Inheriting the efficient MoE design of the Ling 2.0 series, Ring-mini-2.0 activa
33
  <img src="https://mdn.alipayobjects.com/huamei_d2byvp/afts/img/o-vGQadCF_4AAAAAgLAAAAgADod9AQFr/original" width="1000"/>
34
  <p>
35
 
36
-
37
  ## Model Downloads
38
 
39
  <div align="center">
40
 
41
- | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
42
- | :----------------: | :---------------: | :-------------------: | :----------------: | :----------: |
43
- | Ring-mini-2.0 | 16.8B | 1.4B | 128K | [πŸ€— HuggingFace](https://huggingface.co/inclusionAI/Ring-mini-2.0) <br>[πŸ€– Modelscope](https://modelscope.cn/models/inclusionAI/Ring-mini-2.0)|
 
44
  </div>
45
 
46
  ## Quickstart
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ### πŸ€— Hugging Face Transformers
49
 
50
  Here is a code snippet to show you how to use the chat model with `transformers`:
@@ -87,7 +125,9 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
  ```
88
 
89
  ## License
 
90
  This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ring-mini-2.0/blob/main/LICENSE).
91
 
92
  ## Citation
93
- TODO
 
 
1
  ---
2
  license: mit
3
  base_model:
4
+ - inclusionAI/Ling-mini-base-2.0-20T
5
  pipeline_tag: text-generation
6
  library_name: transformers
7
  ---
8
+
9
  # Ring-mini-2.0
10
 
11
  <p align="center">
12
  <img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*4QxcQrBlTiAAAAAAQXAAAAgAemJ7AQ/original" width="100"/>
13
  <p>
14
 
15
+ <p align="center">πŸ€— <a href="https://huggingface.co/inclusionAI">Hugging Face</a>&nbsp&nbsp | &nbsp&nbspπŸ€– <a href="https://modelscope.cn/organization/inclusionAI">ModelScope</a>&nbsp&nbsp | &nbsp&nbspπŸ™ <a href="https://zenmux.ai/inclusionai/ring-mini-2.0">ChatNow</a></p>
16
 
17
  Today, we officially release Ring-mini-2.0 β€” a high-performance inference-oriented MoE model deeply optimized based on the Ling 2.0 architecture. With only 16B total parameters and 1.4B activated parameters, it achieves comprehensive reasoning capabilities comparable to dense models below the 10B scale. It excels particularly in logical reasoning, code generation, and mathematical tasks, while supporting 128K long-context processing and 300+ tokens/s high-speed generation.
18
 
19
  ## Enhanced Reasoning: Joint Training with SFT + RLVR + RLHF
20
+
21
  Built upon Ling-mini-2.0-base, Ring-mini-2.0 undergoes further training with Long-CoT SFT, more stable and continuous RLVR, and RLHF joint optimization, significantly improving the stability and generalization of complex reasoning. On multiple challenging benchmarks (LiveCodeBench, AIME 2025, GPQA, ARC-AGI-v1, etc.), it outperforms dense models below 10B and even rivals larger MoE models (e.g., gpt-oss-20B-medium) with comparable output lengths, particularly excelling in logical reasoning.
22
 
23
  <p align="center">
 
26
  <p>
27
 
28
  ## High Sparsity, High-Speed Generation
29
+
30
  Inheriting the efficient MoE design of the Ling 2.0 series, Ring-mini-2.0 activates only 1.4B parameters and achieves performance equivalent to 7–8B dense models through architectural optimizations such as 1/32 expert activation ratio and MTP layers. Thanks to its low activation and high sparsity design, Ring-mini-2.0 delivers a throughput of 300+ tokens/s when deployed on H20. With Expert Dual Streaming inference optimization, this can be further boosted to 500+ tokens/s, significantly reducing inference costs for high-concurrency scenarios involving thinking models. Additionally, with YaRN extrapolation, it supports 128K long-context processing, achieving a relative speedup of up to 7x in long-output scenarios.
31
+
32
  <p align="center">
33
  <img src="https://mdn.alipayobjects.com/huamei_d2byvp/afts/img/gjJKSpFVphEAAAAAgdAAAAgADod9AQFr/original" width="1000"/>
34
  <p>
 
37
  <img src="https://mdn.alipayobjects.com/huamei_d2byvp/afts/img/o-vGQadCF_4AAAAAgLAAAAgADod9AQFr/original" width="1000"/>
38
  <p>
39
 
 
40
  ## Model Downloads
41
 
42
  <div align="center">
43
 
44
+ | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
45
+ | :-----------: | :---------------: | :-------------------: | :----------------: | :--------------------------------------------------------------------------------------------------------------------------------------------: |
46
+ | Ring-mini-2.0 | 16.8B | 1.4B | 128K | [πŸ€— HuggingFace](https://huggingface.co/inclusionAI/Ring-mini-2.0) <br>[πŸ€– Modelscope](https://modelscope.cn/models/inclusionAI/Ring-mini-2.0) |
47
+
48
  </div>
49
 
50
  ## Quickstart
51
 
52
+ ### πŸš€ Try Online
53
+
54
+ You can experience Ring-mini-2.0 online at: [ZenMux](https://zenmux.ai/inclusionai/ring-mini-2.0)
55
+
56
+ ### πŸ”Œ API Usage
57
+
58
+ You can also use Ring-mini-2.0 through API calls:
59
+
60
+ ```python
61
+ from openai import OpenAI
62
+
63
+ # 1. Initialize the OpenAI client
64
+ client = OpenAI(
65
+ # 2. Point the base URL to the ZenMux endpoint
66
+ base_url="https://zenmux.ai/api/v1",
67
+ # 3. Replace with the API Key from your ZenMux user console
68
+ api_key="<your ZENMUX_API_KEY>",
69
+ )
70
+
71
+ # 4. Make a request
72
+ completion = client.chat.completions.create(
73
+ # 5. Specify the model to use in the format "provider/model-name"
74
+ model="inclusionai/ring-mini-2.0",
75
+ messages=[
76
+ {
77
+ "role": "user",
78
+ "content": "What is the meaning of life?"
79
+ }
80
+ ]
81
+ )
82
+
83
+ print(completion.choices[0].message.content)
84
+ ```
85
+
86
  ### πŸ€— Hugging Face Transformers
87
 
88
  Here is a code snippet to show you how to use the chat model with `transformers`:
 
125
  ```
126
 
127
  ## License
128
+
129
  This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ring-mini-2.0/blob/main/LICENSE).
130
 
131
  ## Citation
132
+
133
+ TODO