Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: bert-base-cased
|
| 3 |
+
datasets:
|
| 4 |
+
- ma2za/many_emotions
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
tags:
|
| 7 |
+
- onnx
|
| 8 |
+
- emotion-detection
|
| 9 |
+
- BaseLM:bert-base-cased
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# BERT-Based Emotion Detection on ma2za/many_emotions
|
| 13 |
+
|
| 14 |
+
This repository hosts a fine-tuned emotion detection model built on [BERT-base-cased](https://huggingface.co/bert-base-cased). The model is trained on the [ma2za/many_emotions](https://huggingface.co/datasets/ma2za/many_emotions) dataset to classify text into one of seven emotion categories: anger, fear, joy, love, sadness, surprise, and neutral. The model is available in both PyTorch and ONNX formats for efficient deployment.
|
| 15 |
+
|
| 16 |
+
## Model Details
|
| 17 |
+
|
| 18 |
+
### Model Description
|
| 19 |
+
|
| 20 |
+
- **Developed by:** *Your Name or Organization*
|
| 21 |
+
- **Model Type:** Sequence Classification (Emotion Detection)
|
| 22 |
+
- **Base Model:** bert-base-cased
|
| 23 |
+
- **Dataset:** ma2za/many_emotions
|
| 24 |
+
- **Export Format:** ONNX (for deployment)
|
| 25 |
+
- **License:** Apache-2.0
|
| 26 |
+
- **Tags:** onnx, emotion-detection, BERT, sequence-classification
|
| 27 |
+
|
| 28 |
+
This model was fine-tuned on the ma2za/many_emotions dataset, where the text is classified into emotion categories based on the content. For quick experimentation, a subset of the training data was used; however, the full model has been trained with the complete dataset and is now publicly available.
|
| 29 |
+
|
| 30 |
+
## Training Details
|
| 31 |
+
|
| 32 |
+
### Dataset Details
|
| 33 |
+
- **Dataset ID:** ma2za/many_emotions
|
| 34 |
+
- **Text Column:** `text`
|
| 35 |
+
- **Label Column:** `label`
|
| 36 |
+
|
| 37 |
+
### Training Hyperparameters
|
| 38 |
+
- **Epochs:** 1 (for quick test; adjust to your needs)
|
| 39 |
+
- **Per Device Batch Size:** 96
|
| 40 |
+
- **Learning Rate:** 1e-5
|
| 41 |
+
- **Weight Decay:** 0.01
|
| 42 |
+
- **Optimizer:** AdamW
|
| 43 |
+
- **Training Duration:** The full training run on the complete dataset (approximately 2.44 million training examples) was completed in about 3 hours and 40 minutes.
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## ONNX Export
|
| 48 |
+
|
| 49 |
+
The model has been exported to the ONNX format using opset version 14, ensuring support for modern operators such as `scaled_dot_product_attention`. This enables flexible deployment scenarios across different platforms using ONNX Runtime.
|
| 50 |
+
|
| 51 |
+
## How to Load the Model
|
| 52 |
+
|
| 53 |
+
Instead of loading the model from a local directory, you can load it directly from the Hugging Face Hub using the repository name `iimran/EmotionDetection`.
|
| 54 |
+
|
| 55 |
+
### Loading with Transformers (PyTorch)
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
import os
|
| 59 |
+
import numpy as np
|
| 60 |
+
import onnxruntime as ort
|
| 61 |
+
from transformers import AutoTokenizer, AutoConfig
|
| 62 |
+
from huggingface_hub import hf_hub_download
|
| 63 |
+
|
| 64 |
+
# Specify the repository details.
|
| 65 |
+
repo_id = "iimran/EmotionDetection"
|
| 66 |
+
filename = "model.onnx"
|
| 67 |
+
|
| 68 |
+
# Download the ONNX model file from the Hub.
|
| 69 |
+
onnx_model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 70 |
+
print("Model downloaded to:", onnx_model_path)
|
| 71 |
+
|
| 72 |
+
# Load the tokenizer and configuration from the repository.
|
| 73 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
| 74 |
+
config = AutoConfig.from_pretrained(repo_id)
|
| 75 |
+
|
| 76 |
+
# Check whether the configuration contains an id2label mapping.
|
| 77 |
+
if hasattr(config, "id2label") and config.id2label and len(config.id2label) > 0:
|
| 78 |
+
id2label = config.id2label
|
| 79 |
+
else:
|
| 80 |
+
# Default mapping for ma2za/many_emotions if not present in the config.
|
| 81 |
+
id2label = {
|
| 82 |
+
0: "anger",
|
| 83 |
+
1: "fear",
|
| 84 |
+
2: "joy",
|
| 85 |
+
3: "love",
|
| 86 |
+
4: "sadness",
|
| 87 |
+
5: "surprise",
|
| 88 |
+
6: "neutral"
|
| 89 |
+
}
|
| 90 |
+
print("id2label mapping:", id2label)
|
| 91 |
+
|
| 92 |
+
# Create an ONNX Runtime inference session using the local model file.
|
| 93 |
+
session = ort.InferenceSession(onnx_model_path)
|
| 94 |
+
|
| 95 |
+
def onnx_infer(text):
|
| 96 |
+
"""
|
| 97 |
+
Perform inference on the input text using the exported ONNX model.
|
| 98 |
+
Returns the predicted emotion label.
|
| 99 |
+
"""
|
| 100 |
+
# Tokenize the input text with a fixed maximum sequence length matching the model export.
|
| 101 |
+
inputs = tokenizer(
|
| 102 |
+
text,
|
| 103 |
+
return_tensors="np",
|
| 104 |
+
truncation=True,
|
| 105 |
+
padding="max_length",
|
| 106 |
+
max_length=256
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# Prepare the model inputs.
|
| 110 |
+
ort_inputs = {
|
| 111 |
+
"input_ids": inputs["input_ids"],
|
| 112 |
+
"attention_mask": inputs["attention_mask"]
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# Run the model.
|
| 116 |
+
outputs = session.run(None, ort_inputs)
|
| 117 |
+
logits = outputs[0]
|
| 118 |
+
|
| 119 |
+
# Get the predicted class id.
|
| 120 |
+
predicted_class_id = int(np.argmax(logits, axis=-1)[0])
|
| 121 |
+
|
| 122 |
+
# Map the predicted class id to its emotion label.
|
| 123 |
+
predicted_label = id2label.get(str(predicted_class_id), id2label.get(predicted_class_id, str(predicted_class_id)))
|
| 124 |
+
|
| 125 |
+
print("Predicted Emotion ID:", predicted_class_id)
|
| 126 |
+
print("Predicted Emotion:", predicted_label)
|
| 127 |
+
return predicted_label
|
| 128 |
+
|
| 129 |
+
# Test the inference function.
|
| 130 |
+
onnx_infer("That rude customer made me furious.")
|
| 131 |
+
```
|
| 132 |
+
## Evaluation
|
| 133 |
+
The model is primarily evaluated using the accuracy metric during training. For deployment, further evaluation on unseen data is recommended to ensure robustness in production settings.
|
| 134 |
+
|