Upload YAML configuration
Browse files- config.yaml +140 -0
config.yaml
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
env:
|
| 2 |
+
name: none
|
| 3 |
+
resume: false
|
| 4 |
+
device: cuda
|
| 5 |
+
use_amp: false
|
| 6 |
+
seed: 1000
|
| 7 |
+
dataset_repo_id: iantc104/rpl_real_peg_in_hole
|
| 8 |
+
video_backend: pyav
|
| 9 |
+
training:
|
| 10 |
+
offline_steps: 50000
|
| 11 |
+
num_workers: 4
|
| 12 |
+
batch_size: 8
|
| 13 |
+
eval_freq: ???
|
| 14 |
+
log_freq: 100
|
| 15 |
+
save_checkpoint: true
|
| 16 |
+
save_freq: 10000
|
| 17 |
+
online_steps: ???
|
| 18 |
+
online_rollout_n_episodes: 1
|
| 19 |
+
online_rollout_batch_size: 1
|
| 20 |
+
online_steps_between_rollouts: 1
|
| 21 |
+
online_sampling_ratio: 0.5
|
| 22 |
+
online_env_seed: null
|
| 23 |
+
online_buffer_capacity: null
|
| 24 |
+
online_buffer_seed_size: 0
|
| 25 |
+
do_online_rollout_async: false
|
| 26 |
+
image_transforms:
|
| 27 |
+
enable: false
|
| 28 |
+
max_num_transforms: 3
|
| 29 |
+
random_order: false
|
| 30 |
+
brightness:
|
| 31 |
+
weight: 1
|
| 32 |
+
min_max:
|
| 33 |
+
- 0.8
|
| 34 |
+
- 1.2
|
| 35 |
+
contrast:
|
| 36 |
+
weight: 1
|
| 37 |
+
min_max:
|
| 38 |
+
- 0.8
|
| 39 |
+
- 1.2
|
| 40 |
+
saturation:
|
| 41 |
+
weight: 1
|
| 42 |
+
min_max:
|
| 43 |
+
- 0.5
|
| 44 |
+
- 1.5
|
| 45 |
+
hue:
|
| 46 |
+
weight: 1
|
| 47 |
+
min_max:
|
| 48 |
+
- -0.05
|
| 49 |
+
- 0.05
|
| 50 |
+
sharpness:
|
| 51 |
+
weight: 1
|
| 52 |
+
min_max:
|
| 53 |
+
- 0.8
|
| 54 |
+
- 1.2
|
| 55 |
+
num_episodes: 40
|
| 56 |
+
lr: 1.0e-05
|
| 57 |
+
weight_decay: 0.0001
|
| 58 |
+
grad_clip_norm: 10
|
| 59 |
+
delta_timestamps:
|
| 60 |
+
observation.images.wrist:
|
| 61 |
+
- -2.0
|
| 62 |
+
- -1.0
|
| 63 |
+
- 0.0
|
| 64 |
+
observation.state:
|
| 65 |
+
- -2.0
|
| 66 |
+
- -1.0
|
| 67 |
+
- 0.0
|
| 68 |
+
eval:
|
| 69 |
+
n_episodes: 1
|
| 70 |
+
batch_size: 1
|
| 71 |
+
use_async_envs: false
|
| 72 |
+
wandb:
|
| 73 |
+
enable: true
|
| 74 |
+
disable_artifact: false
|
| 75 |
+
project: rpl_sim
|
| 76 |
+
notes: ''
|
| 77 |
+
fps: 1
|
| 78 |
+
policy:
|
| 79 |
+
name: rnd
|
| 80 |
+
n_obs_steps: 3
|
| 81 |
+
fps: ${fps}
|
| 82 |
+
input_shapes:
|
| 83 |
+
observation.images.wrist:
|
| 84 |
+
- 3
|
| 85 |
+
- 120
|
| 86 |
+
- 160
|
| 87 |
+
observation.state:
|
| 88 |
+
- 22
|
| 89 |
+
input_normalization_modes:
|
| 90 |
+
observation.images.wrist: mean_std
|
| 91 |
+
observation.state: mean_std
|
| 92 |
+
predictor_cnn_out_channels:
|
| 93 |
+
- 16
|
| 94 |
+
- 32
|
| 95 |
+
- 64
|
| 96 |
+
predictor_cnn_kernel_size:
|
| 97 |
+
- 10
|
| 98 |
+
- 6
|
| 99 |
+
- 4
|
| 100 |
+
predictor_cnn_stride:
|
| 101 |
+
- 5
|
| 102 |
+
- 3
|
| 103 |
+
- 2
|
| 104 |
+
predictor_cnn_padding:
|
| 105 |
+
- 0
|
| 106 |
+
- 0
|
| 107 |
+
- 0
|
| 108 |
+
predictor_cnn_use_batchnorm: false
|
| 109 |
+
predictor_cnn_use_maxpool: false
|
| 110 |
+
predictor_cnn_use_spatial_softmax: false
|
| 111 |
+
predictor_cnn_spatial_softmax_num_keypoints: -1
|
| 112 |
+
predictor_mlp_hidden_sizes:
|
| 113 |
+
- 512
|
| 114 |
+
- 512
|
| 115 |
+
predictor_activation: ReLU
|
| 116 |
+
target_cnn_out_channels:
|
| 117 |
+
- 16
|
| 118 |
+
- 32
|
| 119 |
+
- 64
|
| 120 |
+
target_cnn_kernel_size:
|
| 121 |
+
- 10
|
| 122 |
+
- 6
|
| 123 |
+
- 4
|
| 124 |
+
target_cnn_stride:
|
| 125 |
+
- 5
|
| 126 |
+
- 3
|
| 127 |
+
- 2
|
| 128 |
+
target_cnn_padding:
|
| 129 |
+
- 0
|
| 130 |
+
- 0
|
| 131 |
+
- 0
|
| 132 |
+
target_cnn_use_batchnorm: false
|
| 133 |
+
target_cnn_use_maxpool: false
|
| 134 |
+
target_cnn_use_spatial_softmax: false
|
| 135 |
+
target_cnn_spatial_softmax_num_keypoints: -1
|
| 136 |
+
target_mlp_hidden_sizes:
|
| 137 |
+
- 512
|
| 138 |
+
- 512
|
| 139 |
+
target_activation: ReLU
|
| 140 |
+
dim_output: 512
|