diabolic6045's picture
Upload 13 files
d4c8750 verified
base_model: Qwen/Qwen2.5-VL-7B-Instruct
processor_type: AutoProcessor
# these 3 lines are needed for now to handle vision chat templates w images
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
chat_template: qwen2_vl
datasets:
- path: sanskrit_multimodal_train.json
type: chat_template
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./outputs/out-qwen2-5-vl
adapter: lora
lora_model_dir:
sequence_len: 2048
pad_to_sequence_len: false
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|cross_attn|self_attn).(up|down|gate|q|k|v|o)_proj'
wandb_project: Sanskrit-OCR
wandb_entity:
wandb_watch:
wandb_name: qwen2-5-vl-sanskrit-ocr
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: true
fp16:
tf32: true
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
eager_attention:
warmup_ratio: 0.1
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
# Automatically upload checkpoint and final model to HF
hub_model_id: diabolic6045/qwen2-5-vl-sanskrit-ocr-lora
# save_first_step: true # uncomment this to validate checkpoint saving works with your config