File size: 10,099 Bytes
d4c8750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python3
"""
Improved quick test script for Sanskrit multimodal model
Uses better prompting to get actual Sanskrit text transcription
"""

import json
import torch
import base64
import io
from PIL import Image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from peft import PeftModel
import numpy as np
from typing import List, Dict
import re
import os

def load_model_and_processor(model_path: str, adapter_path: str = None):
    """Load the base model and processor"""
    print("Loading processor...")
    processor = AutoProcessor.from_pretrained(model_path)
    
    print("Loading base model...")
    # Use the correct Qwen2.5-VL model class
    model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        model_path,
        torch_dtype=torch.bfloat16,
        device_map={"": 0}  # Force to GPU 0
    )
    
    if adapter_path and os.path.exists(adapter_path):
        print("Loading LoRA adapters...")
        model = PeftModel.from_pretrained(model, adapter_path)
    else:
        print("No adapter path found, using base model only")
    
    model.eval()
    print(f"Model loaded on device: {next(model.parameters()).device}")
    return model, processor

def decode_base64_image(base64_string: str) -> Image.Image:
    """Decode base64 string to PIL Image"""
    if base64_string.startswith('data:image'):
        base64_string = base64_string.split(',')[1]
    
    image_data = base64.b64decode(base64_string)
    image = Image.open(io.BytesIO(image_data))
    return image

def preprocess_sanskrit_text(text: str) -> str:
    """Preprocess Sanskrit text for evaluation"""
    text = re.sub(r'\s+', ' ', text.strip())
    return text

def calculate_exact_match(predicted: str, ground_truth: str) -> bool:
    """Calculate exact match accuracy"""
    predicted = preprocess_sanskrit_text(predicted)
    ground_truth = preprocess_sanskrit_text(ground_truth)
    return predicted == ground_truth

def calculate_character_accuracy(predicted: str, ground_truth: str) -> float:
    """Calculate character-level accuracy using edit distance"""
    predicted = preprocess_sanskrit_text(predicted)
    ground_truth = preprocess_sanskrit_text(ground_truth)
    
    if not ground_truth:
        return 1.0 if not predicted else 0.0
    
    m, n = len(predicted), len(ground_truth)
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    
    for i in range(m + 1):
        dp[i][0] = i
    for j in range(n + 1):
        dp[0][j] = j
    
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if predicted[i-1] == ground_truth[j-1]:
                dp[i][j] = dp[i-1][j-1]
            else:
                dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])
    
    edit_distance = dp[m][n]
    max_length = max(m, n)
    accuracy = 1.0 - (edit_distance / max_length) if max_length > 0 else 1.0
    return max(0.0, accuracy)

def calculate_token_jaccard(predicted: str, ground_truth: str) -> float:
    """Calculate token-level Jaccard similarity"""
    predicted = preprocess_sanskrit_text(predicted)
    ground_truth = preprocess_sanskrit_text(ground_truth)
    
    pred_tokens = set(predicted.split())
    gt_tokens = set(ground_truth.split())
    
    if not pred_tokens and not gt_tokens:
        return 1.0
    
    intersection = len(pred_tokens & gt_tokens)
    union = len(pred_tokens | gt_tokens)
    
    return intersection / union if union > 0 else 0.0

def generate_response(model, processor, image: Image.Image, prompt: str) -> str:
    """Generate response from the model"""
    try:
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": prompt}
                ]
            }
        ]
        
        # Preparation for inference
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        
        # Get model device and move inputs there
        model_device = next(model.parameters()).device
        inputs = {k: v.to(model_device) for k, v in inputs.items()}
        
        with torch.no_grad():
            generated_ids = model.generate(
                **inputs,
                max_new_tokens=512,  # Increased for longer Sanskrit text
                do_sample=False,
                pad_token_id=processor.tokenizer.eos_token_id,
                use_cache=True,
                repetition_penalty=1.1
            )
        
        # Extract only the generated part
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs['input_ids'], generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        
        return output_text[0] if output_text else ""
        
    except Exception as e:
        print(f"Error generating response: {e}")
        import traceback
        traceback.print_exc()
        return ""

def main():
    # Configuration
    model_path = 'Qwen/Qwen2.5-VL-7B-Instruct'
    adapter_path = './outputs/out-qwen2-5-vl'
    test_data_path = 'sanskrit_multimodal_test.json'
    
    # Try different prompts to see which works best
    prompts = [
        # "What Sanskrit script is visible in this image?",
        # "Transcribe the Sanskrit text in this image:",
        # "Read the Sanskrit text from this image:",
        # "What Sanskrit text is written in this image?",
        "Please transcribe the Sanskrit text shown in this image:"
    ]
    
    max_samples = 3  # Test on first 3 samples
    
    print("Loading test data...")
    with open(test_data_path, 'r', encoding='utf-8') as f:
        test_data = json.load(f)
    
    test_data = test_data[:max_samples]
    print(f"Testing on {len(test_data)} samples")
    
    # Load model
    model, processor = load_model_and_processor(model_path, adapter_path)
    
    # Test different prompts
    for prompt_idx, prompt in enumerate(prompts):
        print(f"\n{'='*60}")
        print(f"TESTING PROMPT {prompt_idx + 1}: {prompt}")
        print(f"{'='*60}")
        
        # Evaluation metrics
        exact_matches = 0
        character_accuracies = []
        token_jaccards = []
        failed_predictions = 0
        
        for i, sample in enumerate(test_data):
            print(f"\n--- Sample {i+1} ---")
            
            try:
                # Extract ground truth
                ground_truth = ""
                for message in sample['messages']:
                    if message['role'] == 'assistant':
                        for content in message['content']:
                            if content['type'] == 'text':
                                ground_truth = content['text']
                                break
                        break
                
                # Extract and decode image
                image = None
                for message in sample['messages']:
                    if message['role'] == 'user':
                        for content in message['content']:
                            if content['type'] == 'image':
                                image = decode_base64_image(content['base64'])
                                break
                        break
                
                if image is None:
                    print("No image found")
                    failed_predictions += 1
                    continue
                
                print(f"Ground Truth: {ground_truth}")
                
                # Generate prediction
                predicted = generate_response(model, processor, image, prompt)
                print(f"Predicted: {predicted}")
                
                if not predicted:
                    print("Empty prediction")
                    failed_predictions += 1
                    continue
                
                # Calculate metrics
                exact_match = calculate_exact_match(predicted, ground_truth)
                char_accuracy = calculate_character_accuracy(predicted, ground_truth)
                token_jaccard = calculate_token_jaccard(predicted, ground_truth)
                
                print(f"Exact Match: {exact_match}")
                print(f"Character Accuracy: {char_accuracy:.4f}")
                print(f"Token Jaccard: {token_jaccard:.4f}")
                
                if exact_match:
                    exact_matches += 1
                
                character_accuracies.append(char_accuracy)
                token_jaccards.append(token_jaccard)
                
            except Exception as e:
                print(f"Error processing sample: {e}")
                failed_predictions += 1
                continue
        
        # Calculate final results for this prompt
        successful_samples = len(test_data) - failed_predictions
        
        if successful_samples > 0:
            exact_match_accuracy = exact_matches / successful_samples
            avg_char_accuracy = np.mean(character_accuracies)
            avg_token_jaccard = np.mean(token_jaccards)
        else:
            exact_match_accuracy = 0.0
            avg_char_accuracy = 0.0
            avg_token_jaccard = 0.0
        
        # Print results for this prompt
        print(f"\n--- RESULTS FOR PROMPT {prompt_idx + 1} ---")
        print(f"Exact Match Accuracy: {exact_match_accuracy:.4f}")
        print(f"Average Character Accuracy: {avg_char_accuracy:.4f}")
        print(f"Average Token Jaccard: {avg_token_jaccard:.4f}")
    
    print(f"\n{'='*60}")
    print("ALL PROMPTS TESTED")
    print(f"{'='*60}")

if __name__ == "__main__":
    main()