File size: 14,468 Bytes
e8dfaa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
---
extra_gated_fields:
  First Name: text
  Last Name: text
  Date of birth: date_picker
  Country: country
  Affiliation: text
  Job title:
    type: select
    options:
      - Student
      - Research Graduate
      - AI researcher
      - AI developer/engineer
      - Reporter
      - Other
  geo: ip_location
  By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
  The information you provide will be collected, stored, processed and shared in
  accordance with the [Meta Privacy
  Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
language:
- en
tags:
- dino
- dinov3
- arxiv:2508.10104
license: other
license_name: dinov3-license
license_link: https://ai.meta.com/resources/models-and-libraries/dinov3-license
pipeline_tag: image-feature-extraction
library_name: transformers
---

# Model Card for DINOv3

DINOv3 is a family of versatile vision foundation models that outperforms the specialized state of the art across a broad range of settings, without fine-tuning. DINOv3 produces high-quality dense features that achieve outstanding performance on various vision tasks, significantly surpassing previous self- and weakly-supervised foundation models.

## Model Details

These are Vision Transformer and ConvNeXt models trained following the method described in the DINOv3 paper. 12 models are provided:

- 10 models pretrained on web data (LVD-1689M dataset)
  - 1 ViT-7B trained from scratch,
  - 5 ViT-S/S+/B/L/H+ models distilled from the ViT-7B,
  - 4 ConvNeXt-{T/S/B/L} models distilled from the ViT-7B,
- 2 models pretrained on satellite data (SAT-493M dataset)
  - 1 ViT-7B trained from scratch
  - 1 ViT-L distilled from the ViT-7B


Each Transformer-based model takes an image as input and returns a class token, patch tokens (and register tokens). These models follow a ViT architecture, with a patch size of 16. For a 224x224 image, this results in 1 class token + 4 register tokens + 196 patch tokens = 201 tokens (for DINOv2 with registers this resulted in 1 + 4 + 256 = 261 tokens).

The models can accept larger images provided the image shapes are multiples of the patch size (16). If this condition is not verified, the model will crop to the closest smaller multiple of the patch size.

### Model Description

- **Developed by:** Meta AI
- **Model type:** Vision Transformer, ConvNeXt
- **License:** [DINOv3 License](https://ai.meta.com/resources/models-and-libraries/dinov3-license/)

### Model Sources

- **Repository:** [https://github.com/facebookresearch/dinov3](https://github.com/facebookresearch/dinov3)
- **Paper:** [https://arxiv.org/abs/2508.10104](https://arxiv.org/abs/2508.10104)

## Uses

The models are vision backbones providing multi-purpose features for downstream tasks.

### Direct Use

The models can be used without fine-tuning, with downstream classifiers as simple as linear layers, to obtain competitive results:

- on image classification, using k-NN classifiers on the class token
- on image classification, with logistic regression classifiers applied on the class token
- on image classification, with a linear layer applied on the class token and the average of the patch tokens
- on image retrieval using nearest neighbors
- on geometric and semantic 3D keypoint correspondances
- on depth estimation, semantic segmentation, using linear layers
- on unsupervised object discovery
- on video segmentation tracking
- on video classification, using a small 4-layer attentive probe

### Downstream Use

While fine-tuning the models can yield some gains, it is recommended to keep this option as a last resort: the frozen features are expected to provide good performance out-of-the-box.

## Bias, Risks, and Limitations

Compared to DINOv2 and SEERv2, DINOv3 delivers somewhat consistent performance across income categories on geographical fairness and diversity, although with a notable performance drop in the low-income bucket compared to the highest-income bucket.

DINOv3 also achieves relatively good scores across different regions, improving over its predecessor DINOv2. However, a relative difference is still observed between Europe and Africa.

### Recommendations

Fine-tuning is expected to increase the biases in the features produced by the model as they will be tuned to the fine-tuning labels.

## How to Get Started with the Model

The example below demonstrates how to obtain an image embedding with [Pipeline] or the [AutoModel] class.

```python
from transformers import pipeline
from transformers.image_utils import load_image

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = load_image(url)

feature_extractor = pipeline(
    model="facebook/dinov3-vit7b16-pretrain-lvd1689m",
    task="image-feature-extraction", 
)
features = feature_extractor(image)
```

```python
import torch
from transformers import AutoImageProcessor, AutoModel
from transformers.image_utils import load_image

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = load_image(url)

pretrained_model_name = "facebook/dinov3-vit7b16-pretrain-lvd1689m"
processor = AutoImageProcessor.from_pretrained(pretrained_model_name)
model = AutoModel.from_pretrained(
    pretrained_model_name, 
    device_map="auto", 
)

inputs = processor(images=image, return_tensors="pt").to(model.device)
with torch.inference_mode():
    outputs = model(**inputs)

pooled_output = outputs.pooler_output
print("Pooled output shape:", pooled_output.shape)
```

## Training Details

### Training Data

- Web dataset (LVD-1689M): a curated dataset of 1,689 millions of images extracted from a large data
pool of 17 billions web images collected from public posts on Instagram

- Satellite dataset (SAT-493M): a dataset of 493 millions of 512x512 images sampled randomly from Maxar RGB ortho-rectified imagery at 0.6 meter resolution

### Training Procedure

**Training objective:**

- DINO self-distillation loss with multi-crop
- iBOT masked-image modeling loss
- KoLeo regularization on [CLS] tokens
- Gram anchoring

- **Training regime:** PyTorch FSDP2 (with bf16 and fp8 matrix multiplications)

**Distillation:**

- Distillation follows the standard DINOv3 pretraining procedure, except the teacher is a frozen pretrained ViT-7B.

## Evaluation

**Results**

The reader is referred to the associated paper for details on the evaluation protocols

*Results for ViT backbones pretrained (or distilled) on web (LVD-1689M)*

<table>
  <tr>
    <th></th>
    <!-- <th></th> -->
    <th colspan="4">Global Tasks</th>
    <th colspan="5">Dense Tasks</th>
  </tr>
  <tr>
    <th>Model</th>
    <!-- <th>Dataset</th> -->
    <th>IN-ReaL</th>
    <th>IN-R</th>
    <th>Obj.Net</th>
    <th>Ox.-H</th>
    <th>ADE20k</th>
    <th>NYU↓</th>
    <th>DAVIS</th>
    <th>NAVI</th>
    <th>SPair</th>
  </tr>
  <tr>
    <td>DINOv3 ViT-S/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">87.0</td>
    <td align="right">60.4</td>
    <td align="right">50.9</td>
    <td align="right">49.5</td>
    <td align="right">47.0</td>
    <td align="right">0.403</td>
    <td align="right">72.7</td>
    <td align="right">56.3</td>
    <td align="right">50.4</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-S+/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">88.0</td>
    <td align="right">68.8</td>
    <td align="right">54.6</td>
    <td align="right">50.0</td>
    <td align="right">48.8</td>
    <td align="right">0.399</td>
    <td align="right">75.5</td>
    <td align="right">57.1</td>
    <td align="right">55.2</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-B/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">89.3</td>
    <td align="right">76.7</td>
    <td align="right">64.1</td>
    <td align="right">58.5</td>
    <td align="right">51.8</td>
    <td align="right">0.373</td>
    <td align="right">77.2</td>
    <td align="right">58.8</td>
    <td align="right">57.2</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-L/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">90.2</td>
    <td align="right">88.1</td>
    <td align="right">74.8</td>
    <td align="right">63.1</td>
    <td align="right">54.9</td>
    <td align="right">0.352</td>
    <td align="right">79.9</td>
    <td align="right">62.3</td>
    <td align="right">61.3</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-H+/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">90.3</td>
    <td align="right">90.0</td>
    <td align="right">78.6</td>
    <td align="right">64.5</td>
    <td align="right">54.8</td>
    <td align="right">0.352</td>
    <td align="right">79.3</td>
    <td align="right">63.3</td>
    <td align="right">56.3</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-7B/16</td>
    <!-- <td>LVD-1689M</td> -->
    <td align="right">90.4</td>
    <td align="right">91.1</td>
    <td align="right">91.1</td>
    <td align="right">72.8</td>
    <td align="right">55.9</td>
    <td align="right">0.309</td>
    <td align="right">79.7</td>
    <td align="right">64.4</td>
    <td align="right">58.7</td>
  </tr>
</table>

*Results for ConvNeXt backbones distilled on web (LVD-1689M)*

<table>
  <tr>
    <th></th>
    <th colspan="6">Global Tasks</th>
    <th colspan="2">Dense Tasks</th>
  </tr>
  <tr>
    <th>Model</th>
    <th colspan="2">IN-ReaL</th>
    <th colspan="2">IN-R</th>
    <th colspan="2">Obj.Net</th>
    <th>ADE20k</th>
    <th>NYU↓</th>
  </tr>
  <tr>
    <td></th>
    <td>@256px</td>
    <td>@512px</td>
    <td>@256px</td>
    <td>@512px</td>
    <td>@256px</td>
    <td>@512px</td>
    <td colspan="2"></td>
  </tr>
  <tr>
    <td>DINOv3 ConvNeXt Tiny</td>
    <td align="right">86.6</td>
    <td align="right">87.7</td>
    <td align="right">73.7</td>
    <td align="right">74.1</td>
    <td align="right">52.6</td>
    <td align="right">58.7</td>
    <td align="right">42.7</td>
    <td align="right">0.448</td>
  </tr>
  <tr>
    <td>DINOv3 ConvNeXt Small</td>
    <td align="right">87.9</td>
    <td align="right">88.7</td>
    <td align="right">73.7</td>
    <td align="right">74.1</td>
    <td align="right">52.6</td>
    <td align="right">58.7</td>
    <td align="right">44.8</td>
    <td align="right">0.432</td>
  </tr>
  <tr>
    <td>DINOv3 ConvNeXt Base</td>
    <td align="right">88.5</td>
    <td align="right">89.2</td>
    <td align="right">77.2</td>
    <td align="right">78.2</td>
    <td align="right">56.2</td>
    <td align="right">61.3</td>
    <td align="right">46.3</td>
    <td align="right">0.420</td>
  </tr>
  <tr>
    <td>DINOv3 ConvNeXt Large</td>
    <td align="right">88.9</td>
    <td align="right">89.4</td>
    <td align="right">81.3</td>
    <td align="right">82.4</td>
    <td align="right">59.3</td>
    <td align="right">65.2</td>
    <td align="right">47.8</td>
    <td align="right">0.403</td>
  </tr>
</table>

*Results for ViT backbones pretrained (or distilled) on satellite (SAT-493M)*

<table>
  <tr>
    <th></th>
    <th colspan="7">(GEO-Bench) Classification</th>
  </tr>
  <tr>
    <th>Model</ht>
    <th>m-BEnet</th>
    <th>m-brick-kiln
    <th>m-eurosat</th>
    <th>m-forestnet</th>
    <th>m-pv4ger</th>
    <th>m-so2sat</th>
    <th>mean</th>
  </tr>
  <tr>
    <td>DINOv3 ViT-L/16</td>
    <td>73.0</td>
    <td>96.5</td>
    <td>94.1</td>
    <td>60.6</td>
    <td>96.0</td>
    <td>57.4</td>
    <td>79.6</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-7B/16</td>
    <td>74.0</td>
    <td>97.2</td>
    <td>94.8</td>
    <td>62.3</td>
    <td>96.1</td>
    <td>62.1</td>
    <td>81.1</td>
  </tr>
  <tr>
    <th></th>
    <th colspan="7">(GEO-Bench) Segmentation</th>
  </tr>
  <tr>
    <th>Model</th>
    <th>m-cashew</th>
    <th>m-chesapeake</th>
    <th>m-NeonTree</th>
    <th>m-nz-cattle</th>
    <th>m-pv4ger-seg</th>
    <th>m-SA-crop</th>
    <th>mean</th>
  </tr>
  <tr>
    <td>DINOv3 ViT-L/16</td>
    <td>94.2</td>
    <td>75.6</td>
    <td>61.8</td>
    <td>83.7</td>
    <td>95.2</td>
    <td>36.8</td>
    <td>74.5</td>
  </tr>
  <tr>
    <td>DINOv3 ViT-7B/16</td>
    <td>94.1</td>
    <td>76.6</td>
    <td>62.6</td>
    <td>83.4</td>
    <td>95.5</td>
    <td>37.6</td>
    <td>75.0</td>
  </tr>
</table>


## Environmental Impact

- **Hardware Type:** Nvidia H100
- **Hours used:** 61,440 hours for ViT-7B model training
- **Cloud Provider:** Private infrastructure
- **Compute Region:** USA
- **Carbon Emitted:** 18t CO2eq

## Technical Specifications

### Model Architecture and Objective

Vision Transformer models:

- ViT-S (21M parameters): patch size 16, embedding dimension 384, 4 register tokens, 6 heads, MLP FFN, RoPE
- ViT-S+ (29M parameters): patch size 16, embedding dimension 384, 4 register tokens, 6 heads, SwiGLU FFN, RoPE
- ViT-B (86M parameters): patch size 16, embedding dimension 768, 4 register tokens, 12 heads, MLP FFN, RoPE
- ViT-L (300M parameters): patch size 16, embedding dimension 1024, 4 register tokens, 16 heads, MLP FFN, RoPE
- ViT-H+ (840M parameters): patch size 16, embedding dimension 1280, 4 register tokens, 20 heads, SwiGLU FFN, RoPE
- ViT-7B (6716M parameters): patch size 16, embedding dimension 4096, 4 register tokens, 32 heads, SwiGLU FFN, RoPE

ConvNeXt models:

- ConvNeXt Tiny (29M parameters)
- ConvNeXt Small (50M parameters)
- ConvNeXt Base (89M parameters)
- ConvNeXt Large (198M parameters)

### Compute Infrastructure

#### Hardware

Nvidia H100 GPUs

#### Software

PyTorch 2.7

## More Information

See the [blog post](https://ai.meta.com/blog/dinov3-self-supervised-vision-model/) and the associated [website](https://ai.meta.com/dinov3/).

## Citation

**BibTeX**

```
@misc{simeoni2025dinov3,
  title={{DINOv3}},
  author={Sim{\'e}oni, Oriane and Vo, Huy V. and Seitzer, Maximilian and Baldassarre, Federico and Oquab, Maxime and Jose, Cijo and Khalidov, Vasil and Szafraniec, Marc and Yi, Seungeun and Ramamonjisoa, Micha{\"e}l and Massa, Francisco and Haziza, Daniel and Wehrstedt, Luca and Wang, Jianyuan and Darcet, Timoth{\'e}e and Moutakanni, Th{\'e}o and Sentana, Leonel and Roberts, Claire and Vedaldi, Andrea and Tolan, Jamie and Brandt, John and Couprie, Camille and Mairal, Julien and J{\'e}gou, Herv{\'e} and Labatut, Patrick and Bojanowski, Piotr},
  year={2025},
  eprint={2508.10104},
  archivePrefix={arXiv},
  primaryClass={cs.CV},
  url={https://arxiv.org/abs/2508.10104},
}
```