UTS2017_Bank / stats.py
Vu Anh
Refactor all scripts - simple and elegant code
21fc01c
#!/usr/bin/env python3
"""Generate statistics for the UTS2017_Bank dataset."""
import json
import statistics as stats
from collections import Counter
from pathlib import Path
def load_jsonl(file_path):
"""Load JSONL file and return list of items."""
with open(file_path, encoding="utf-8") as f:
return [json.loads(line.strip()) for line in f]
def text_stats(items):
"""Calculate text length statistics."""
word_counts = [len(item["text"].split()) for item in items]
return {
"avg": stats.mean(word_counts),
"min": min(word_counts),
"max": max(word_counts),
"median": stats.median(word_counts),
}
def print_subset_stats(subset_name, emoji):
"""Print statistics for a dataset subset."""
print(f"\n{emoji} {subset_name.upper()} SUBSET")
print("-" * 40)
for split in ["train", "test"]:
file_path = Path(f"data/{subset_name}/{split}.jsonl")
items = load_jsonl(file_path)
print(f"\n{split.capitalize()}: {len(items)} examples")
# Text statistics
text_data = text_stats(items)
print(f" Words: avg={text_data['avg']:.1f}, range={text_data['min']}-{text_data['max']}")
# Subset-specific stats
if subset_name == "classification":
labels = Counter(item["label"] for item in items)
print(f" Top labels: {', '.join(f'{k}({v})' for k, v in labels.most_common(3))}")
elif subset_name == "sentiment":
sentiments = Counter(item["sentiment"] for item in items)
print(f" Sentiments: {', '.join(f'{k}({v})' for k, v in sentiments.most_common())}")
elif subset_name == "aspect_sentiment":
multi_aspect = sum(1 for item in items if len(item["aspects"]) > 1)
print(f" Multi-aspect: {multi_aspect}/{len(items)} examples")
def main():
"""Generate and display dataset statistics."""
print("๐Ÿ“Š UTS2017_Bank Dataset Statistics")
print("=" * 50)
# Overall stats
train_items = load_jsonl("data/classification/train.jsonl")
test_items = load_jsonl("data/classification/test.jsonl")
total = len(train_items) + len(test_items)
print(f"\n๐Ÿ“ˆ OVERALL: {total} examples ({len(train_items)} train, {len(test_items)} test)")
# Subset statistics
print_subset_stats("classification", "๐Ÿท๏ธ")
print_subset_stats("sentiment", "๐Ÿ˜Š")
print_subset_stats("aspect_sentiment", "๐ŸŽฏ")
# Available configurations
print("\n๐Ÿ’ก USAGE:")
print(" load_dataset('undertheseanlp/UTS2017_Bank', 'classification')")
print(" load_dataset('undertheseanlp/UTS2017_Bank', 'sentiment')")
print(" load_dataset('undertheseanlp/UTS2017_Bank', 'aspect_sentiment')")
if __name__ == "__main__":
main()