indraroy commited on
Commit
f927803
·
1 Parent(s): ee2dcc7

Fix loader path for HF dataset

Browse files
Files changed (1) hide show
  1. isonetpp_loader.py +43 -66
isonetpp_loader.py CHANGED
@@ -1,92 +1,67 @@
1
  # isonetpp_loader.py
2
  from __future__ import annotations
3
  import os
4
- import pickle
5
- from typing import Literal, Optional, Dict
6
  from huggingface_hub import hf_hub_download
7
 
8
- try:
9
- from subiso_dataset import SubgraphIsomorphismDataset, TRAIN_MODE, VAL_MODE, TEST_MODE, BROAD_TEST_MODE, GMN_DATA_TYPE, PYG_DATA_TYPE
10
- except Exception as e:
11
- raise ImportError(
12
- "Make sure `subiso_dataset.py` (with SubgraphIsomorphismDataset) is in the same repo.\n"
13
- f"Import error: {e}"
14
- )
15
-
16
- Mode = Literal["train", "val", "test", "Extra_test_300"]
17
- Size = Literal["small", "large"]
18
- Name = Literal["aids240k", "mutag240k", "ptc_fm240k", "ptc_fr240k", "ptc_mm240k", "ptc_mr240k"]
19
 
20
- def _mode_prefix(mode: str) -> str:
21
- # Your file naming uses "test" prefix for Extra_test_300 as well
22
- return "test" if "test" in mode.lower() else mode
 
 
 
23
 
24
- def _pair_count(dataset_size: Size) -> str:
25
- return "80k" if dataset_size == "small" else "240k"
26
 
27
  def _ensure_paths(
28
  repo_id: str,
29
- mode: Mode,
30
- dataset_name: Name,
31
- dataset_size: Size,
32
  local_root: Optional[str] = None,
33
  ) -> Dict[str, str]:
34
- """
35
- Download the three files needed for a given split into local cache (or local_root if set):
36
- - <mode>_<name><pairs>_query_subgraphs.pkl
37
- - <mode>_<name><pairs>_rel_nx_is_subgraph_iso.pkl
38
- - <name><pairs>_corpus_subgraphs.pkl (lives next to splits in our layout under `corpus/`)
39
- Returns local file paths.
40
- """
41
- prefix = _mode_prefix(mode)
42
- pairs = _pair_count(dataset_size)
43
 
44
- # Expected layout in your dataset repo:
45
- # corpus/<name>_corpus_subgraphs.pkl
46
- # splits/<mode>/<mode>_<name>_query_subgraphs.pkls
47
- # splits/<mode>/<mode>_<name>_rel_nx_is_subgraph_iso.pkl
48
- query_fname = f"{prefix}_{dataset_name}_{'query_subgraphs' if '_' in dataset_name else 'query_subgraphs'}.pkl"
49
- rel_fname = f"{prefix}_{dataset_name}_{'rel_nx_is_subgraph_iso' if '_' in dataset_name else 'rel_nx_is_subgraph_iso'}.pkl"
50
  pairs = "80k" if dataset_size == "small" else "240k"
51
- size_folder = "small_dataset" if dataset_size == "small" else "large_dataset"
52
 
53
- # Your actual saved names were like: train_aids240k_query_subgraphs.pkl (without extra underscore)
54
- # So fix the minor formatting exactly:
55
  query_fname = f"{prefix}_{dataset_name}{pairs}_query_subgraphs.pkl"
56
  rel_fname = f"{prefix}_{dataset_name}{pairs}_rel_nx_is_subgraph_iso.pkl"
57
  corpus_fname = f"{dataset_name}{pairs}_corpus_subgraphs.pkl"
58
 
 
 
 
59
 
 
60
 
61
- # Where files are in repo
62
- repo_query_path = f"{size_folder}/splits/{mode}/{query_fname}"
63
- repo_rel_path = f"{size_folder}/splits/{mode}/{rel_fname}"
64
- repo_corpus_path = f"{size_folder}/corpus/{corpus_fname}"
65
-
66
- # Download to cache (or local_root if provided)
67
- kwargs = dict(repo_id=repo_id, repo_type="dataset")
68
- query_path = hf_hub_download(filename=repo_query_path, **kwargs, local_dir=local_root, local_dir_use_symlinks=False)
69
- rel_path = hf_hub_download(filename=repo_rel_path, **kwargs, local_dir=local_root, local_dir_use_symlinks=False)
70
- corpus_path= hf_hub_download(filename=repo_corpus_path,**kwargs, local_dir=local_root, local_dir_use_symlinks=False)
71
 
72
  return {"query": query_path, "rel": rel_path, "corpus": corpus_path}
73
 
74
  def load_isonetpp_benchmark(
75
  repo_id: str = "structlearning/isonetpp-benchmark",
76
- mode: Mode = "train",
77
- dataset_name: Name = "aids240k",
78
- dataset_size: Size = "large",
79
  batch_size: int = 128,
80
  data_type: str = "pyg",
81
  device: Optional[str] = None,
82
  download_root: Optional[str] = None,
83
  ):
84
- """
85
- Returns: an initialized SubgraphIsomorphismDataset with files downloaded from the HF Hub.
86
- """
87
- # Map to your class constants
88
  mode_map = {
89
- "train": TRAIN_MODE, "val": VAL_MODE, "test": TEST_MODE, "extra_test_300": BROAD_TEST_MODE, "Extra_test_300": BROAD_TEST_MODE
 
90
  }
91
  mode_norm = mode_map.get(mode, mode)
92
 
@@ -95,25 +70,27 @@ def load_isonetpp_benchmark(
95
  mode=mode_norm,
96
  dataset_name=dataset_name,
97
  dataset_size=dataset_size,
98
- local_root=download_root,
99
  )
100
 
101
- # Your class expects dataset_base_path + "splits/<mode>/..." and "corpus/..."
102
- # We'll set dataset_base_path to the parent of the downloaded structure and override "dataset_path_override"
103
- base_path = os.path.dirname(os.path.dirname(paths["query"])) # points to .../splits/
104
- dataset_base_path = os.path.dirname(base_path) # parent folder containing `splits` and `corpus`
 
 
 
105
 
106
  dataset_config = dict(
107
  mode=mode_norm,
108
- dataset_name=dataset_name,
109
  dataset_size=dataset_size,
110
  batch_size=batch_size,
111
  data_type=data_type,
112
  dataset_base_path=dataset_base_path,
 
113
  experiment=None,
114
- dataset_path_override="large_dataset" if dataset_size=="large" else "small_dataset",
115
  device=device,
116
  )
117
 
118
- ds = SubgraphIsomorphismDataset(**dataset_config)
119
- return ds
 
1
  # isonetpp_loader.py
2
  from __future__ import annotations
3
  import os
4
+ from typing import Optional, Dict
 
5
  from huggingface_hub import hf_hub_download
6
 
7
+ from subiso_dataset import (
8
+ SubgraphIsomorphismDataset,
9
+ TRAIN_MODE, VAL_MODE, TEST_MODE, BROAD_TEST_MODE,
10
+ GMN_DATA_TYPE, PYG_DATA_TYPE
11
+ )
 
 
 
 
 
 
12
 
13
+ # Normalize names users pass ("aids" or "aids240k" → stored names are aids240k)
14
+ def _normalize_name(name: str) -> str:
15
+ if name.endswith("240k") or name.endswith("80k"):
16
+ return name
17
+ # assume large dataset default = 240k
18
+ return name + "240k"
19
 
20
+ def _folder(dataset_size: str) -> str:
21
+ return "small_dataset" if dataset_size == "small" else "large_dataset"
22
 
23
  def _ensure_paths(
24
  repo_id: str,
25
+ mode: str,
26
+ dataset_name: str,
27
+ dataset_size: str,
28
  local_root: Optional[str] = None,
29
  ) -> Dict[str, str]:
 
 
 
 
 
 
 
 
 
30
 
31
+ dataset_name = _normalize_name(dataset_name)
32
+ folder = _folder(dataset_size) # "large_dataset" or "small_dataset"
33
+ prefix = "test" if "test" in mode.lower() else mode
 
 
 
34
  pairs = "80k" if dataset_size == "small" else "240k"
 
35
 
 
 
36
  query_fname = f"{prefix}_{dataset_name}{pairs}_query_subgraphs.pkl"
37
  rel_fname = f"{prefix}_{dataset_name}{pairs}_rel_nx_is_subgraph_iso.pkl"
38
  corpus_fname = f"{dataset_name}{pairs}_corpus_subgraphs.pkl"
39
 
40
+ repo_query_path = f"{folder}/splits/{mode}/{query_fname}"
41
+ repo_rel_path = f"{folder}/splits/{mode}/{rel_fname}"
42
+ repo_corpus_path = f"{folder}/corpus/{corpus_fname}"
43
 
44
+ kwargs = dict(repo_id=repo_id, repo_type="dataset", local_dir=local_root, local_dir_use_symlinks=False)
45
 
46
+ query_path = hf_hub_download(filename=repo_query_path, **kwargs)
47
+ rel_path = hf_hub_download(filename=repo_rel_path, **kwargs)
48
+ corpus_path = hf_hub_download(filename=repo_corpus_path, **kwargs)
 
 
 
 
 
 
 
49
 
50
  return {"query": query_path, "rel": rel_path, "corpus": corpus_path}
51
 
52
  def load_isonetpp_benchmark(
53
  repo_id: str = "structlearning/isonetpp-benchmark",
54
+ mode: str = "train",
55
+ dataset_name: str = "aids",
56
+ dataset_size: str = "large",
57
  batch_size: int = 128,
58
  data_type: str = "pyg",
59
  device: Optional[str] = None,
60
  download_root: Optional[str] = None,
61
  ):
 
 
 
 
62
  mode_map = {
63
+ "train": TRAIN_MODE, "val": VAL_MODE, "test": TEST_MODE,
64
+ "extra_test_300": BROAD_TEST_MODE, "Extra_test_300": BROAD_TEST_MODE
65
  }
66
  mode_norm = mode_map.get(mode, mode)
67
 
 
70
  mode=mode_norm,
71
  dataset_name=dataset_name,
72
  dataset_size=dataset_size,
73
+ local_root=download_root
74
  )
75
 
76
+ # The downloaded structure is:
77
+ # <cache>/.../<folder>/splits/<mode>/<files>
78
+ # <cache>/.../<folder>/corpus/<files>
79
+ #
80
+ # So dataset_base_path = parent of <folder>
81
+ base_path = os.path.dirname(os.path.dirname(paths["query"])) # .../<folder>/splits
82
+ dataset_base_path = os.path.dirname(base_path) # .../<folder>
83
 
84
  dataset_config = dict(
85
  mode=mode_norm,
86
+ dataset_name=_normalize_name(dataset_name),
87
  dataset_size=dataset_size,
88
  batch_size=batch_size,
89
  data_type=data_type,
90
  dataset_base_path=dataset_base_path,
91
+ dataset_path_override=_folder(dataset_size), # 🟢 critical fix
92
  experiment=None,
 
93
  device=device,
94
  )
95
 
96
+ return SubgraphIsomorphismDataset(**dataset_config)