Datasets:
Upload 2 files
Browse files
README.md
CHANGED
|
@@ -11,10 +11,39 @@ size_categories:
|
|
| 11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
| 12 |
- tabular-classification
|
| 13 |
configs:
|
|
|
|
| 14 |
- two-years-recidividity
|
| 15 |
- two-years-recidividity-no-race
|
| 16 |
- priors-prediction
|
| 17 |
- priors-prediction-no-race
|
|
|
|
| 18 |
---
|
| 19 |
# Compas
|
| 20 |
-
The [Compas dataset](https://github.com/propublica/compas-analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
| 12 |
- tabular-classification
|
| 13 |
configs:
|
| 14 |
+
- encoding
|
| 15 |
- two-years-recidividity
|
| 16 |
- two-years-recidividity-no-race
|
| 17 |
- priors-prediction
|
| 18 |
- priors-prediction-no-race
|
| 19 |
+
- race
|
| 20 |
---
|
| 21 |
# Compas
|
| 22 |
+
The [Compas dataset](https://github.com/propublica/compas-analysis) for recidivism prediction.
|
| 23 |
+
|
| 24 |
+
# Configurations and tasks
|
| 25 |
+
- `encoding` Encoding of non-numerical variables.
|
| 26 |
+
- `two-years-recidividity` Binary classification of violent recidivism.
|
| 27 |
+
- `two-years-recidividity-no-race` As above, but the `race` feature is removed.
|
| 28 |
+
- `priors-prediction` Regression on the number of prior offenses of defendant.
|
| 29 |
+
- `priors-prediction-no-race` As above, but the `race` feature is removed.
|
| 30 |
+
- `race` Multiclass classification, predict `race` out of other features.
|
| 31 |
+
|
| 32 |
+
# Features
|
| 33 |
+
|
| 34 |
+
|**Feature** |**Type** |**Description** |
|
| 35 |
+
|---------------------------------------|-----------|---------------------------------------|
|
| 36 |
+
|`sex` |`int64` | |
|
| 37 |
+
|`age` |`int64` | |
|
| 38 |
+
|`race` |`int64` | |
|
| 39 |
+
|`number_of_juvenile_fellonies` |`int64` | |
|
| 40 |
+
|`decile_score` |`int64` |Criminality score |
|
| 41 |
+
|`number_of_juvenile_misdemeanors` |`int64` | |
|
| 42 |
+
|`number_of_other_juvenile_offenses` |`int64` | |
|
| 43 |
+
|`number_of_prior_offenses` |`int64` | |
|
| 44 |
+
|`days_before_screening_arrest` |`int64` | |
|
| 45 |
+
|`is_recidivous` |`int64` | |
|
| 46 |
+
|`days_in_custody` |`int64` |Days spent in custody |
|
| 47 |
+
|`is_violent_recidivous` |`int64` | |
|
| 48 |
+
|`violence_decile_score` |`int64` |Criminality score for violent crimes |
|
| 49 |
+
|`two_years_recidivous` |`int64` | |
|
compas.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
"""Compas Dataset"""
|
| 2 |
|
| 3 |
from typing import List
|
|
|
|
| 4 |
import datetime
|
| 5 |
|
| 6 |
import datasets
|
|
@@ -81,6 +82,20 @@ _BASE_FEATURE_NAMES = [
|
|
| 81 |
"violence_decile_score",
|
| 82 |
"two_year_recidivous",
|
| 83 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
DESCRIPTION = "COMPAS dataset for recidivism prediction."
|
| 86 |
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
|
|
@@ -163,6 +178,24 @@ features_types_per_config = {
|
|
| 163 |
"two_year_recidivous": datasets.Value("int64"),
|
| 164 |
"number_of_prior_offenses": datasets.Value("int64"),
|
| 165 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
}
|
| 167 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 168 |
|
|
@@ -207,8 +240,14 @@ class Compas(datasets.GeneratorBasedBuilder):
|
|
| 207 |
]
|
| 208 |
|
| 209 |
def _generate_examples(self, filepath: str):
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
for row_id, row in data.iterrows():
|
| 214 |
data_row = dict(row)
|
|
@@ -287,95 +326,20 @@ class Compas(datasets.GeneratorBasedBuilder):
|
|
| 287 |
|
| 288 |
data.columns = _BASE_FEATURE_NAMES
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
|
| 306 |
-
def encoding_dictionaries(self):
|
| 307 |
-
race_dic, sex_dic = self.race_encoding_dic(), self.sex_encoding_dic()
|
| 308 |
-
race_data = [("race", race, code) for race, code in race_dic.items()]
|
| 309 |
-
sex_data = [("sex", sex, code) for sex, code in sex_dic.items()]
|
| 310 |
-
data = pandas.DataFrame(race_data + sex_data,
|
| 311 |
-
columns=["feature", "original_value", "encoded_value"])
|
| 312 |
-
|
| 313 |
return data
|
| 314 |
-
|
| 315 |
-
def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
| 316 |
-
# categorize features
|
| 317 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
| 318 |
-
|
| 319 |
-
return data
|
| 320 |
-
|
| 321 |
-
def two_years_recidividity_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
| 322 |
-
# categorize features
|
| 323 |
-
data.drop("race", axis="columns", inplace=True)
|
| 324 |
-
|
| 325 |
-
return data
|
| 326 |
-
|
| 327 |
-
def priors_prediction_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
| 328 |
-
# categorize features
|
| 329 |
-
data.loc[:, "race"] = data.race.apply(self.encode_race)
|
| 330 |
-
|
| 331 |
-
return data
|
| 332 |
-
|
| 333 |
-
def priors_prediction_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
| 334 |
-
# categorize features
|
| 335 |
-
data.drop("race", axis="columns", inplace=True)
|
| 336 |
-
|
| 337 |
-
return data
|
| 338 |
-
|
| 339 |
-
def encode_race(self, race):
|
| 340 |
-
return self.race_encoding_dic()[race]
|
| 341 |
-
|
| 342 |
-
def decode_race(self, code):
|
| 343 |
-
return self.race_decoding_dic()[code]
|
| 344 |
-
|
| 345 |
-
def race_decoding_dic(self):
|
| 346 |
-
return {
|
| 347 |
-
0: "Caucasian",
|
| 348 |
-
1: "African-American",
|
| 349 |
-
2: "Hispanic",
|
| 350 |
-
3: "Asian",
|
| 351 |
-
4: "Other",
|
| 352 |
-
5: "Native American",
|
| 353 |
-
}
|
| 354 |
-
|
| 355 |
-
def race_encoding_dic(self):
|
| 356 |
-
return {
|
| 357 |
-
"Caucasian": 0,
|
| 358 |
-
"African-American": 1,
|
| 359 |
-
"Hispanic": 2,
|
| 360 |
-
"Asian": 3,
|
| 361 |
-
"Other": 4,
|
| 362 |
-
"Native American": 5,
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
def encode_sex(self, sex):
|
| 366 |
-
return self.sex_encoding_dic()[sex]
|
| 367 |
-
|
| 368 |
-
def decode_sex(self, code):
|
| 369 |
-
return self.sex_decoding_dic()[code]
|
| 370 |
-
|
| 371 |
-
def sex_encoding_dic(self):
|
| 372 |
-
return {
|
| 373 |
-
"Male": 0,
|
| 374 |
-
"Female": 1
|
| 375 |
-
}
|
| 376 |
-
|
| 377 |
-
def sex_decoding_dic(self):
|
| 378 |
-
return {
|
| 379 |
-
0: "Male",
|
| 380 |
-
1: "Female"
|
| 381 |
-
}
|
|
|
|
| 1 |
"""Compas Dataset"""
|
| 2 |
|
| 3 |
from typing import List
|
| 4 |
+
from functools import partial
|
| 5 |
import datetime
|
| 6 |
|
| 7 |
import datasets
|
|
|
|
| 82 |
"violence_decile_score",
|
| 83 |
"two_year_recidivous",
|
| 84 |
]
|
| 85 |
+
_ENCODING_DICS = {
|
| 86 |
+
"sex": {
|
| 87 |
+
"Male": 0,
|
| 88 |
+
"Female": 1
|
| 89 |
+
},
|
| 90 |
+
"race": {
|
| 91 |
+
"Caucasian": 0,
|
| 92 |
+
"African-American": 1,
|
| 93 |
+
"Hispanic": 2,
|
| 94 |
+
"Asian": 3,
|
| 95 |
+
"Other": 4,
|
| 96 |
+
"Native American": 5,
|
| 97 |
+
}
|
| 98 |
+
}
|
| 99 |
|
| 100 |
DESCRIPTION = "COMPAS dataset for recidivism prediction."
|
| 101 |
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
|
|
|
|
| 178 |
"two_year_recidivous": datasets.Value("int64"),
|
| 179 |
"number_of_prior_offenses": datasets.Value("int64"),
|
| 180 |
},
|
| 181 |
+
|
| 182 |
+
"race": {
|
| 183 |
+
"sex": datasets.Value("int64"),
|
| 184 |
+
"age": datasets.Value("int64"),
|
| 185 |
+
"number_of_juvenile_fellonies": datasets.Value("int64"),
|
| 186 |
+
"decile_score": datasets.Value("int64"),
|
| 187 |
+
"number_of_juvenile_misdemeanors": datasets.Value("int64"),
|
| 188 |
+
"number_of_other_juvenile_offenses": datasets.Value("int64"),
|
| 189 |
+
"days_before_screening_arrest": datasets.Value("int64"),
|
| 190 |
+
"is_recidivous": datasets.Value("int64"),
|
| 191 |
+
"days_in_custody": datasets.Value("int64"),
|
| 192 |
+
"is_violent_recidivous": datasets.Value("int64"),
|
| 193 |
+
"violence_decile_score": datasets.Value("int64"),
|
| 194 |
+
"two_year_recidivous": datasets.Value("int64"),
|
| 195 |
+
"number_of_prior_offenses": datasets.Value("int64"),
|
| 196 |
+
"race": datasets.ClassLabel(num_classes=6, names=("Caucasian", "African-American",
|
| 197 |
+
"Hispanic", "Asian", "Other", "Native American")),
|
| 198 |
+
}
|
| 199 |
}
|
| 200 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
| 201 |
|
|
|
|
| 240 |
]
|
| 241 |
|
| 242 |
def _generate_examples(self, filepath: str):
|
| 243 |
+
if self.config.name not in features_types_per_config:
|
| 244 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
| 245 |
+
|
| 246 |
+
if self.config.name == "encoding":
|
| 247 |
+
data = self.encoding_dicts()
|
| 248 |
+
else:
|
| 249 |
+
data = pandas.read_csv(filepath)
|
| 250 |
+
data = self.preprocess(data, config=self.config.name)
|
| 251 |
|
| 252 |
for row_id, row in data.iterrows():
|
| 253 |
data_row = dict(row)
|
|
|
|
| 326 |
|
| 327 |
data.columns = _BASE_FEATURE_NAMES
|
| 328 |
|
| 329 |
+
for feature in _ENCODING_DICS:
|
| 330 |
+
if feature == "race":
|
| 331 |
+
if config != "race":
|
| 332 |
+
continue
|
| 333 |
+
encoding_function = partial(self.encode, feature)
|
| 334 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
| 335 |
+
|
| 336 |
+
return data[list(features_types_per_config[config].keys())]
|
| 337 |
+
|
| 338 |
+
def encoding_dics(self):
|
| 339 |
+
data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
|
| 340 |
+
for feature, d in _ENCODING_DICS.items()]
|
| 341 |
+
data = pandas.concat(data, axis="rows").reset_index()
|
| 342 |
+
data.drop("index", axis="columns", inplace=True)
|
| 343 |
+
data.columns = ["feature", "original_value", "encoded_value"]
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|