Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
version: 1.0.0
|
| 3 |
license: cc-by-sa-4.0
|
| 4 |
task_categories:
|
| 5 |
-
- tabular-
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
pretty_name: MolData
|
|
@@ -42,6 +42,8 @@ dataset_info:
|
|
| 42 |
dtype: string
|
| 43 |
- name: 'Y'
|
| 44 |
dtype: int64
|
|
|
|
|
|
|
| 45 |
splits:
|
| 46 |
- name: train
|
| 47 |
num_bytes: 12634275804
|
|
@@ -76,8 +78,9 @@ This is a mirror of the [Official Github repo](https://github.com/LumosBio/MolDa
|
|
| 76 |
|
| 77 |
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing:
|
| 78 |
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
|
| 79 |
-
2.
|
| 80 |
-
3.
|
|
|
|
| 81 |
|
| 82 |
If you would like to try these processes with the original dataset,
|
| 83 |
please follow the instructions in the [Preprocessing Script.py](address) file located in our MolData repository.
|
|
@@ -145,9 +148,9 @@ Split and evaluate the catboost model
|
|
| 145 |
split_dataset,
|
| 146 |
column = "SMILES",
|
| 147 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
| 148 |
-
|
| 149 |
model = load_model_from_dict({
|
| 150 |
-
"name": "
|
| 151 |
"config": {
|
| 152 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
| 153 |
"y_features": ['Y']}})
|
|
@@ -155,11 +158,11 @@ Split and evaluate the catboost model
|
|
| 155 |
model.train(split_featurised_dataset["train"])
|
| 156 |
preds = model.predict(split_featurised_dataset["test"])
|
| 157 |
|
| 158 |
-
|
| 159 |
|
| 160 |
-
scores =
|
| 161 |
references=split_featurised_dataset["test"]['Y'],
|
| 162 |
-
predictions=preds["
|
| 163 |
|
| 164 |
|
| 165 |
### Citation
|
|
|
|
| 2 |
version: 1.0.0
|
| 3 |
license: cc-by-sa-4.0
|
| 4 |
task_categories:
|
| 5 |
+
- tabular-classification
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
pretty_name: MolData
|
|
|
|
| 42 |
dtype: string
|
| 43 |
- name: 'Y'
|
| 44 |
dtype: int64
|
| 45 |
+
description: >-
|
| 46 |
+
Binary classification (0/1)
|
| 47 |
splits:
|
| 48 |
- name: train
|
| 49 |
num_bytes: 12634275804
|
|
|
|
| 78 |
|
| 79 |
We utilized the raw data uploaded on [Github](https://github.com/LumosBio/MolData) and performed several preprocessing:
|
| 80 |
1. Sanitize the molecules using RDKit and MolVS (standardize SMILES format)
|
| 81 |
+
2. Formatting (from wide form to long form)
|
| 82 |
+
3. Rename the columns
|
| 83 |
+
4. Split the dataset (train, test, validation)
|
| 84 |
|
| 85 |
If you would like to try these processes with the original dataset,
|
| 86 |
please follow the instructions in the [Preprocessing Script.py](address) file located in our MolData repository.
|
|
|
|
| 148 |
split_dataset,
|
| 149 |
column = "SMILES",
|
| 150 |
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
|
| 151 |
+
|
| 152 |
model = load_model_from_dict({
|
| 153 |
+
"name": "cat_boost_classifier",
|
| 154 |
"config": {
|
| 155 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
| 156 |
"y_features": ['Y']}})
|
|
|
|
| 158 |
model.train(split_featurised_dataset["train"])
|
| 159 |
preds = model.predict(split_featurised_dataset["test"])
|
| 160 |
|
| 161 |
+
classification_suite = load_suite("classification")
|
| 162 |
|
| 163 |
+
scores = classification_suite.compute(
|
| 164 |
references=split_featurised_dataset["test"]['Y'],
|
| 165 |
+
predictions=preds["cat_boost_classifier::Y"])
|
| 166 |
|
| 167 |
|
| 168 |
### Citation
|