Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Italian
Size:
100M<n<1B
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Cleaned Italian split of the mC4 corpus.""" | |
| import json | |
| import gzip | |
| import textwrap | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """ | |
| @article{JMLR:v21:20-074, | |
| author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, | |
| title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, | |
| journal = {Journal of Machine Learning Research}, | |
| year = {2020}, | |
| volume = {21}, | |
| number = {140}, | |
| pages = {1-67}, | |
| url = {http://jmlr.org/papers/v21/20-074.html} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| A thoroughly cleaned version of the Italian portion of the multilingual | |
| colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI. | |
| Based on Common Crawl dataset: "https://commoncrawl.org". | |
| This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning | |
| detailed in the repository README file. | |
| """ | |
| _HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056" | |
| _LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0" | |
| _BASE_URL = "https://huggingface.co/datasets/gsarti/clean_mc4_it/resolve/main/clean-mc4-it/c4-it{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz" | |
| _CONFIGS = { | |
| "tiny": {"train": 100, "validation": 1}, | |
| "small": {"train": 250, "validation": 2}, | |
| "medium": {"train": 500, "validation": 4}, | |
| "large": {"train": 750, "validation": 6}, | |
| "full": {"train": 1024, "validation": 8} | |
| } | |
| class CleanMc4ItConfig(datasets.BuilderConfig): | |
| """BuilderConfig for the Clean mC4 Italian.""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for Clean mC4 Italian. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super().__init__(**kwargs) | |
| class Mc4(datasets.GeneratorBasedBuilder): | |
| """mC4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" | |
| BUILDER_CONFIGS = [ | |
| CleanMc4ItConfig( | |
| name="tiny", | |
| version=datasets.Version("1.0.0"), | |
| description=textwrap.dedent( | |
| f"""\ | |
| A tiny cleaned version of the Italian portion of the multilingual C4 corpus. | |
| Estimated size of compressed files: 10GB | |
| """ | |
| ) | |
| ), | |
| CleanMc4ItConfig( | |
| name="small", | |
| version=datasets.Version("1.0.0"), | |
| description=textwrap.dedent( | |
| f"""\ | |
| A small cleaned version of the Italian portion of the multilingual C4 corpus. | |
| Estimated size of compressed files: 25GB | |
| """ | |
| ) | |
| ), | |
| CleanMc4ItConfig( | |
| name="medium", | |
| version=datasets.Version("1.0.0"), | |
| description=textwrap.dedent( | |
| f"""\ | |
| A medium cleaned version of the Italian portion of the multilingual C4 corpus. | |
| Estimated size of compressed files: 50GB | |
| """ | |
| ) | |
| ), | |
| CleanMc4ItConfig( | |
| name="large", | |
| version=datasets.Version("1.0.0"), | |
| description=textwrap.dedent( | |
| f"""\ | |
| A large cleaned version of the Italian portion of the multilingual C4 corpus. | |
| Estimated size of compressed files: 75GB | |
| """ | |
| ) | |
| ), | |
| CleanMc4ItConfig( | |
| name="full", | |
| version=datasets.Version("1.0.0"), | |
| description=textwrap.dedent( | |
| f"""\ | |
| The full cleaned version of the Italian portion of the multilingual C4 corpus. | |
| Estimated size of compressed files: 103GB | |
| """ | |
| ) | |
| ) | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "timestamp": datasets.Value("string"), | |
| "url": datasets.Value("string"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| data_urls = {} | |
| for split in ["train", "validation"]: | |
| data_urls[split] = [ | |
| _BASE_URL.format( | |
| split_suffix="-validation" if split == "validation" else "", | |
| index=index, | |
| n_shards=8 if split == "validation" else 1024, | |
| ) | |
| for index in range(_CONFIGS[self.config.name][split]) | |
| ] | |
| train_downloaded_files = dl_manager.download(data_urls["train"]) | |
| validation_downloaded_files = dl_manager.download(data_urls["validation"]) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} | |
| ), | |
| ] | |
| def _generate_examples(self, filepaths): | |
| """This function returns the examples in the raw (text) form by iterating on all the files.""" | |
| id_ = 0 | |
| for filepath in filepaths: | |
| logger.info(f"Generating examples from {filepath}") | |
| with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: | |
| for line in f: | |
| if line: | |
| example = json.loads(line) | |
| yield id_, example | |
| id_ += 1 | |