Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
|
@@ -177,7 +177,8 @@
|
|
| 177 |
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
|
| 178 |
],
|
| 179 |
"metadata": {
|
| 180 |
-
"id": "YDu8XlehhWID"
|
|
|
|
| 181 |
},
|
| 182 |
"execution_count": null,
|
| 183 |
"outputs": []
|
|
@@ -185,13 +186,135 @@
|
|
| 185 |
{
|
| 186 |
"cell_type": "markdown",
|
| 187 |
"source": [
|
| 188 |
-
"**
|
| 189 |
"\n"
|
| 190 |
],
|
| 191 |
"metadata": {
|
| 192 |
"id": "Xf9zoq-Za3wi"
|
| 193 |
}
|
| 194 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
{
|
| 196 |
"cell_type": "code",
|
| 197 |
"source": [
|
|
@@ -206,7 +329,7 @@
|
|
| 206 |
"try:prompt\n",
|
| 207 |
"except: prompt = ''\n",
|
| 208 |
"\n",
|
| 209 |
-
"# @markdown 🖼️+📝 Choose a pre-encoded reference (
|
| 210 |
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
| 211 |
"PROMPT_INDEX = index\n",
|
| 212 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
|
@@ -268,6 +391,15 @@
|
|
| 268 |
"execution_count": null,
|
| 269 |
"outputs": []
|
| 270 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
{
|
| 272 |
"cell_type": "code",
|
| 273 |
"source": [
|
|
@@ -337,6 +469,15 @@
|
|
| 337 |
"execution_count": null,
|
| 338 |
"outputs": []
|
| 339 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
{
|
| 341 |
"cell_type": "code",
|
| 342 |
"source": [
|
|
@@ -463,103 +604,27 @@
|
|
| 463 |
" #------#"
|
| 464 |
],
|
| 465 |
"metadata": {
|
| 466 |
-
"id": "lOQuTPfBMK82"
|
|
|
|
| 467 |
},
|
| 468 |
"execution_count": null,
|
| 469 |
"outputs": []
|
| 470 |
},
|
| 471 |
{
|
| 472 |
-
"cell_type": "
|
| 473 |
"source": [
|
| 474 |
-
"
|
| 475 |
-
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 476 |
-
"\n",
|
| 477 |
-
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
| 478 |
-
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 479 |
-
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 480 |
-
"# @markdown -----\n",
|
| 481 |
-
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
| 482 |
-
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
| 483 |
-
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
| 484 |
"\n",
|
| 485 |
-
"
|
| 486 |
-
"show_encoding = True # @param {type:\"boolean\"}\n",
|
| 487 |
-
"\n",
|
| 488 |
-
"%cd /content/\n",
|
| 489 |
-
"_ref = load_file('reference.safetensors' )\n",
|
| 490 |
-
"ref = _ref['weights'].to(dot_dtype)\n",
|
| 491 |
-
"\n",
|
| 492 |
-
"if EVAL.strip() != '':\n",
|
| 493 |
-
" print(\"Saved Reference:\\n\")\n",
|
| 494 |
-
" for item in EVAL.split(','):\n",
|
| 495 |
-
" if item.strip()=='':continue\n",
|
| 496 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 497 |
-
" test = model.get_text_features(**inputs)[0]\n",
|
| 498 |
-
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
| 499 |
-
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
| 500 |
-
" eval = torch.dot(ref , test)\n",
|
| 501 |
-
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
| 502 |
-
" #-----#\n",
|
| 503 |
-
"\n",
|
| 504 |
-
" if(show_local_reference):\n",
|
| 505 |
-
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
|
| 506 |
-
"\n",
|
| 507 |
-
" for _item in POS.split(','):\n",
|
| 508 |
-
" item = _item.strip()\n",
|
| 509 |
-
" if item == '':continue\n",
|
| 510 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 511 |
-
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
|
| 512 |
-
" #-------#\n",
|
| 513 |
-
"\n",
|
| 514 |
-
" for _item in NEG.split(','):\n",
|
| 515 |
-
" item = _item.strip()\n",
|
| 516 |
-
" if item == '':continue\n",
|
| 517 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 518 |
-
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
| 519 |
-
" #-------#\n",
|
| 520 |
-
"\n",
|
| 521 |
-
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
| 522 |
-
" for item in EVAL.split(','):\n",
|
| 523 |
-
" if item.strip()=='':continue\n",
|
| 524 |
-
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 525 |
-
" test = model.get_text_features(**inputs)[0]\n",
|
| 526 |
-
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
| 527 |
-
" eval = torch.dot(ref , test)\n",
|
| 528 |
-
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
| 529 |
-
" #-----#\n",
|
| 530 |
-
"\n",
|
| 531 |
-
" if show_encoding:\n",
|
| 532 |
-
" # create figure\n",
|
| 533 |
-
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
| 534 |
-
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
| 535 |
-
" rows = 1\n",
|
| 536 |
-
" columns = 3\n",
|
| 537 |
-
" fig.add_subplot(rows, columns, 1)\n",
|
| 538 |
-
" plt.imshow( visualize(ref))\n",
|
| 539 |
-
" plt.axis('off')\n",
|
| 540 |
-
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
| 541 |
-
" if num_plots>1:\n",
|
| 542 |
-
" fig.add_subplot(rows, columns, 2)\n",
|
| 543 |
-
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
| 544 |
-
" plt.axis('off')\n",
|
| 545 |
-
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
| 546 |
-
"\n",
|
| 547 |
-
" fig.add_subplot(rows, columns, 3)\n",
|
| 548 |
-
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
|
| 549 |
-
" plt.axis('off')\n",
|
| 550 |
-
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
|
| 551 |
-
" #------#\n"
|
| 552 |
],
|
| 553 |
"metadata": {
|
| 554 |
-
"id": "
|
| 555 |
-
}
|
| 556 |
-
"execution_count": null,
|
| 557 |
-
"outputs": []
|
| 558 |
},
|
| 559 |
{
|
| 560 |
"cell_type": "code",
|
| 561 |
"source": [
|
| 562 |
-
"# @title ⚄
|
| 563 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
| 564 |
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
| 565 |
"START_AT = 0\n",
|
|
@@ -757,6 +822,17 @@
|
|
| 757 |
"execution_count": null,
|
| 758 |
"outputs": []
|
| 759 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 760 |
{
|
| 761 |
"cell_type": "code",
|
| 762 |
"source": [
|
|
|
|
| 177 |
"print(f'Using settings SCALE = {SCALE} and ZERO_POINT = {ZERO_POINT} for visualizing the text_encoding')"
|
| 178 |
],
|
| 179 |
"metadata": {
|
| 180 |
+
"id": "YDu8XlehhWID",
|
| 181 |
+
"cellView": "form"
|
| 182 |
},
|
| 183 |
"execution_count": null,
|
| 184 |
"outputs": []
|
|
|
|
| 186 |
{
|
| 187 |
"cell_type": "markdown",
|
| 188 |
"source": [
|
| 189 |
+
"**Paste a prompt in the cell below to create an encoding**\n",
|
| 190 |
"\n"
|
| 191 |
],
|
| 192 |
"metadata": {
|
| 193 |
"id": "Xf9zoq-Za3wi"
|
| 194 |
}
|
| 195 |
},
|
| 196 |
+
{
|
| 197 |
+
"cell_type": "code",
|
| 198 |
+
"source": [
|
| 199 |
+
"\n",
|
| 200 |
+
"# @markdown 📝 Write a text prompt (this will overwrite any savefile already stored)\n",
|
| 201 |
+
"NEW_ENCODING = '' # @param {type:'string' ,placeholder:'write a prompt'}\n",
|
| 202 |
+
"enable = True # @param {type:\"boolean\"}\n",
|
| 203 |
+
"# @markdown -----\n",
|
| 204 |
+
"# @markdown 📝 Enhance/Penalize Similarity and skip items containing word(s)\n",
|
| 205 |
+
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 206 |
+
"NEG = ''# @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 207 |
+
"# @markdown -----\n",
|
| 208 |
+
"# @markdown logarithmic prompt strength x for value 10^(x-1)\n",
|
| 209 |
+
"_POS = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
| 210 |
+
"_NEG = 0 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
| 211 |
+
"# @markdown -----\n",
|
| 212 |
+
"# @markdown Check similiarity for this encoding against any written prompt(s)\n",
|
| 213 |
+
"# @title ⚄ Evaluate saved reference similarity to select items (optional)\n",
|
| 214 |
+
"EVAL = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"show_local_reference = True # @param {type:\"boolean\"}\n",
|
| 217 |
+
"show_encoding = True # @param {type:\"boolean\"}\n",
|
| 218 |
+
"\n",
|
| 219 |
+
"try:\n",
|
| 220 |
+
" %cd /content/\n",
|
| 221 |
+
" _ref = load_file('reference.safetensors' )\n",
|
| 222 |
+
" ref = _ref['weights'].to(dot_dtype)\n",
|
| 223 |
+
"except:\n",
|
| 224 |
+
" ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
| 225 |
+
" _ref = {}\n",
|
| 226 |
+
" _ref['weights'] = ref\n",
|
| 227 |
+
" %cd /content/\n",
|
| 228 |
+
" save_file(_ref, 'reference.safetensors')\n",
|
| 229 |
+
"#-----#\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"if NEW_ENCODING.strip() != ''\n",
|
| 232 |
+
" item = NEW_ENCODING.strip()\n",
|
| 233 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 234 |
+
" ref = model.get_text_features(**inputs)[0]\n",
|
| 235 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
| 236 |
+
"#------#\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"try: ref\n",
|
| 239 |
+
"except: ref = torch.zeros(dim).to(dtype = dot_dtype)\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"if EVAL.strip() != '':\n",
|
| 242 |
+
" print(\"Saved Reference:\\n\")\n",
|
| 243 |
+
" for item in EVAL.split(','):\n",
|
| 244 |
+
" if item.strip()=='':continue\n",
|
| 245 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 246 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
| 247 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
| 248 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
| 249 |
+
" eval = torch.dot(ref , test)\n",
|
| 250 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
| 251 |
+
" #-----#\n",
|
| 252 |
+
" if(show_local_reference):\n",
|
| 253 |
+
" print(\"\\n---------\\nLocal Reference with enchancements added :\\n\")\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" for _item in POS.split(','):\n",
|
| 256 |
+
" item = _item.strip()\n",
|
| 257 |
+
" if item == '':continue\n",
|
| 258 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 259 |
+
" ref = ref + math.pow(10,_POS-1) * model.get_text_features(**inputs)[0]\n",
|
| 260 |
+
" #-------#\n",
|
| 261 |
+
"\n",
|
| 262 |
+
" for _item in NEG.split(','):\n",
|
| 263 |
+
" item = _item.strip()\n",
|
| 264 |
+
" if item == '':continue\n",
|
| 265 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 266 |
+
" ref = ref + math.pow(10,_NEG-1) * model.get_text_features(**inputs)[0]\n",
|
| 267 |
+
" #-------#\n",
|
| 268 |
+
"\n",
|
| 269 |
+
" ref= ref/ref.norm(p=2 , dim=-1 , keepdim=True)\n",
|
| 270 |
+
" for item in EVAL.split(','):\n",
|
| 271 |
+
" if item.strip()=='':continue\n",
|
| 272 |
+
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 273 |
+
" test = model.get_text_features(**inputs)[0]\n",
|
| 274 |
+
" test = test/test.norm(p=2 , dim = -1 , keepdim = True)\n",
|
| 275 |
+
" eval = torch.dot(ref , test)\n",
|
| 276 |
+
" print(f'{item.strip()} : {round(eval.item()*100, 2)}%')\n",
|
| 277 |
+
" #-----#\n",
|
| 278 |
+
"\n",
|
| 279 |
+
" if show_encoding:\n",
|
| 280 |
+
" # create figure\n",
|
| 281 |
+
" fig = plt.figure(figsize=(10*image_size, 10*image_size))\n",
|
| 282 |
+
" fig.patch.set_facecolor((56/255,56/255,56/255))\n",
|
| 283 |
+
" rows = 1\n",
|
| 284 |
+
" columns = 3\n",
|
| 285 |
+
" fig.add_subplot(rows, columns, 1)\n",
|
| 286 |
+
" plt.imshow( visualize(ref))\n",
|
| 287 |
+
" plt.axis('off')\n",
|
| 288 |
+
" plt.title( \"Encoding (local variable)\", color='white', fontsize=round(20*image_size))\n",
|
| 289 |
+
" if num_plots>1:\n",
|
| 290 |
+
" fig.add_subplot(rows, columns, 2)\n",
|
| 291 |
+
" plt.imshow( visualize( _ref['weights'].to(dot_dtype)))\n",
|
| 292 |
+
" plt.axis('off')\n",
|
| 293 |
+
" plt.title(\"Encoding (saved file)\", color='white', fontsize=round(20*image_size))\n",
|
| 294 |
+
"\n",
|
| 295 |
+
" fig.add_subplot(rows, columns, 3)\n",
|
| 296 |
+
" plt.imshow( visualize(ref - _ref['weights'].to(dot_dtype)))\n",
|
| 297 |
+
" plt.axis('off')\n",
|
| 298 |
+
" plt.title(\"Changes\", color='white', fontsize=round(20*image_size))\n",
|
| 299 |
+
" #------#\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"\n"
|
| 302 |
+
],
|
| 303 |
+
"metadata": {
|
| 304 |
+
"id": "Oxi6nOyrUTAe"
|
| 305 |
+
},
|
| 306 |
+
"execution_count": null,
|
| 307 |
+
"outputs": []
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "markdown",
|
| 311 |
+
"source": [
|
| 312 |
+
"**Use a pre-encoded image+prompt pair as reference (optional)**"
|
| 313 |
+
],
|
| 314 |
+
"metadata": {
|
| 315 |
+
"id": "f9_AcquM7AYZ"
|
| 316 |
+
}
|
| 317 |
+
},
|
| 318 |
{
|
| 319 |
"cell_type": "code",
|
| 320 |
"source": [
|
|
|
|
| 329 |
"try:prompt\n",
|
| 330 |
"except: prompt = ''\n",
|
| 331 |
"\n",
|
| 332 |
+
"# @markdown 🖼️+📝 Choose a pre-encoded reference (note: some results are NSFW!)\n",
|
| 333 |
"index = 596 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
| 334 |
"PROMPT_INDEX = index\n",
|
| 335 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
|
|
|
| 391 |
"execution_count": null,
|
| 392 |
"outputs": []
|
| 393 |
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "markdown",
|
| 396 |
+
"source": [
|
| 397 |
+
"**Use an image as a reference via URL (optional)**"
|
| 398 |
+
],
|
| 399 |
+
"metadata": {
|
| 400 |
+
"id": "KI9Ho6CG7m3Z"
|
| 401 |
+
}
|
| 402 |
+
},
|
| 403 |
{
|
| 404 |
"cell_type": "code",
|
| 405 |
"source": [
|
|
|
|
| 469 |
"execution_count": null,
|
| 470 |
"outputs": []
|
| 471 |
},
|
| 472 |
+
{
|
| 473 |
+
"cell_type": "markdown",
|
| 474 |
+
"source": [
|
| 475 |
+
"**Use an image as a reference via uploading it to the /content/ folder (optional)**"
|
| 476 |
+
],
|
| 477 |
+
"metadata": {
|
| 478 |
+
"id": "MBPi7F8S7tg3"
|
| 479 |
+
}
|
| 480 |
+
},
|
| 481 |
{
|
| 482 |
"cell_type": "code",
|
| 483 |
"source": [
|
|
|
|
| 604 |
" #------#"
|
| 605 |
],
|
| 606 |
"metadata": {
|
| 607 |
+
"id": "lOQuTPfBMK82",
|
| 608 |
+
"cellView": "form"
|
| 609 |
},
|
| 610 |
"execution_count": null,
|
| 611 |
"outputs": []
|
| 612 |
},
|
| 613 |
{
|
| 614 |
+
"cell_type": "markdown",
|
| 615 |
"source": [
|
| 616 |
+
"**Run the interrogator**\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
"\n",
|
| 618 |
+
" Since the list of items is large (>1 million items) you will need to select a range within the sorted results to print."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
],
|
| 620 |
"metadata": {
|
| 621 |
+
"id": "ROKsoZrt7zMe"
|
| 622 |
+
}
|
|
|
|
|
|
|
| 623 |
},
|
| 624 |
{
|
| 625 |
"cell_type": "code",
|
| 626 |
"source": [
|
| 627 |
+
"# @title ⚄ CLIP Interrogator\n",
|
| 628 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
| 629 |
"_START_AT = '0' # @param [\"0\", \"10000\", \"50000\"] {allow-input: true}\n",
|
| 630 |
"START_AT = 0\n",
|
|
|
|
| 822 |
"execution_count": null,
|
| 823 |
"outputs": []
|
| 824 |
},
|
| 825 |
+
{
|
| 826 |
+
"cell_type": "markdown",
|
| 827 |
+
"source": [
|
| 828 |
+
"**Evaluate Similarities**\n",
|
| 829 |
+
"\n",
|
| 830 |
+
"Run this cell to see how far down the list you can go before similarity to the reference is lost."
|
| 831 |
+
],
|
| 832 |
+
"metadata": {
|
| 833 |
+
"id": "yl1DYzUn8YCC"
|
| 834 |
+
}
|
| 835 |
+
},
|
| 836 |
{
|
| 837 |
"cell_type": "code",
|
| 838 |
"source": [
|