Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
|
@@ -165,15 +165,6 @@
|
|
| 165 |
"execution_count": null,
|
| 166 |
"outputs": []
|
| 167 |
},
|
| 168 |
-
{
|
| 169 |
-
"cell_type": "markdown",
|
| 170 |
-
"source": [
|
| 171 |
-
"The visualization has no effect on the output. It will only be used if you enable the 'Show encoding' checkbox"
|
| 172 |
-
],
|
| 173 |
-
"metadata": {
|
| 174 |
-
"id": "OpOoRmaP3u2H"
|
| 175 |
-
}
|
| 176 |
-
},
|
| 177 |
{
|
| 178 |
"cell_type": "markdown",
|
| 179 |
"source": [
|
|
@@ -219,7 +210,7 @@
|
|
| 219 |
" save_file(_ref, 'reference.safetensors')\n",
|
| 220 |
"#-----#\n",
|
| 221 |
"\n",
|
| 222 |
-
"if NEW_ENCODING.strip() != ''
|
| 223 |
" item = NEW_ENCODING.strip()\n",
|
| 224 |
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 225 |
" ref = model.get_text_features(**inputs)[0]\n",
|
|
@@ -301,7 +292,7 @@
|
|
| 301 |
{
|
| 302 |
"cell_type": "markdown",
|
| 303 |
"source": [
|
| 304 |
-
"
|
| 305 |
],
|
| 306 |
"metadata": {
|
| 307 |
"id": "f9_AcquM7AYZ"
|
|
@@ -549,6 +540,8 @@
|
|
| 549 |
{
|
| 550 |
"cell_type": "markdown",
|
| 551 |
"source": [
|
|
|
|
|
|
|
| 552 |
"**Save the reference prior to running the Interrogator**"
|
| 553 |
],
|
| 554 |
"metadata": {
|
|
@@ -818,6 +811,15 @@
|
|
| 818 |
"execution_count": null,
|
| 819 |
"outputs": []
|
| 820 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 821 |
{
|
| 822 |
"cell_type": "markdown",
|
| 823 |
"source": [
|
|
|
|
| 165 |
"execution_count": null,
|
| 166 |
"outputs": []
|
| 167 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
{
|
| 169 |
"cell_type": "markdown",
|
| 170 |
"source": [
|
|
|
|
| 210 |
" save_file(_ref, 'reference.safetensors')\n",
|
| 211 |
"#-----#\n",
|
| 212 |
"\n",
|
| 213 |
+
"if NEW_ENCODING.strip() != '':\n",
|
| 214 |
" item = NEW_ENCODING.strip()\n",
|
| 215 |
" inputs = tokenizer(text = item.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
| 216 |
" ref = model.get_text_features(**inputs)[0]\n",
|
|
|
|
| 292 |
{
|
| 293 |
"cell_type": "markdown",
|
| 294 |
"source": [
|
| 295 |
+
"# 🖼️ Image encoders (optional)"
|
| 296 |
],
|
| 297 |
"metadata": {
|
| 298 |
"id": "f9_AcquM7AYZ"
|
|
|
|
| 540 |
{
|
| 541 |
"cell_type": "markdown",
|
| 542 |
"source": [
|
| 543 |
+
"# CLIP Interrogator\n",
|
| 544 |
+
"\n",
|
| 545 |
"**Save the reference prior to running the Interrogator**"
|
| 546 |
],
|
| 547 |
"metadata": {
|
|
|
|
| 811 |
"execution_count": null,
|
| 812 |
"outputs": []
|
| 813 |
},
|
| 814 |
+
{
|
| 815 |
+
"cell_type": "markdown",
|
| 816 |
+
"source": [
|
| 817 |
+
"# 🔍 Evaluate similarities"
|
| 818 |
+
],
|
| 819 |
+
"metadata": {
|
| 820 |
+
"id": "RbFayOGtCdUN"
|
| 821 |
+
}
|
| 822 |
+
},
|
| 823 |
{
|
| 824 |
"cell_type": "markdown",
|
| 825 |
"source": [
|