TARL Y commited on
Commit
eeee088
·
1 Parent(s): 6613261

Add BioGraphFusion dataset

Browse files
Files changed (1) hide show
  1. README.md +95 -3
README.md CHANGED
@@ -1,3 +1,95 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BioGraphFusion Dataset
2
+
3
+ [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
4
+ [![Paper](https://img.shields.io/badge/Paper-Bioinformatics-green.svg)](https://doi.org/10.1093/bioinformatics/btaf408)
5
+ [![arXiv](https://img.shields.io/badge/arXiv-2507.14468-b31b1b.svg)](https://arxiv.org/abs/2507.14468)
6
+
7
+ ## ? Dataset Description
8
+
9
+ This dataset contains the benchmark data used in the paper **"BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning"** published in *Bioinformatics*.
10
+
11
+ ## ?? Dataset Structure
12
+
13
+ The dataset includes three biomedical knowledge graph completion tasks with background knowledge integration:
14
+
15
+ ### 1. Disease-Gene Prediction (DisGeNet_cv)
16
+
17
+ - **Task**: Disease-gene association prediction
18
+ - **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Protein-Chemical relationships from STITCH (277,745 triples)
19
+ - **Main Dataset**: DisGeNet (130,820 triples) focusing on gene targets
20
+ - **Description**: Predicts disease-gene associations using multi-source biological knowledge
21
+
22
+ ### 2. Protein-Chemical Interaction (STITCH)
23
+
24
+ - **Task**: Protein-chemical interaction prediction
25
+ - **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Disease-Gene relationships from DisGeNet (130,820 triples)
26
+ - **Main Dataset**: STITCH (23,074 triples) focusing on chemical targets
27
+ - **Description**: Predicts protein-chemical interactions with integrated disease and gene knowledge
28
+
29
+ ### 3. Medical Ontology Reasoning (UMLS)
30
+
31
+ - **Task**: Medical concept reasoning
32
+ - **Background Knowledge**: Various medical relationships from UMLS (4,006 triples)
33
+ - **Main Dataset**: UMLS (2,523 triples) with multi-domain entities
34
+ - **Description**: Reasons about medical concepts and their hierarchical relationships
35
+
36
+ ## ? Dataset Statistics
37
+
38
+ | Dataset | Task | Background Knowledge Sources | Main Dataset Targets | Total Triples |
39
+ |---------|------|------------------------------|---------------------|---------------|
40
+ | **Disease-Gene Prediction** | Disease-gene association prediction | Drug-Disease Relationships SIDER (14,631) + Protein-Chemical Relationships STITCH (277,745) | DisGeNet (130,820) Gene | ~423K |
41
+ | **Protein-Chemical Interaction** | Protein-chemical interaction prediction | Drug-Disease Relationships SIDER (14,631) + Disease-Gene Relationships DisGeNet (130,820) | STITCH (23,074) Chemical | ~168K |
42
+ | **Medical Ontology Reasoning** | Medical concept reasoning | Various Medical Relationships UMLS (4,006) | UMLS (2,523) Multi-domain Entities | ~6.5K |
43
+
44
+ ## ? Usage
45
+
46
+ ### Loading the Dataset
47
+
48
+ ```python
49
+ from datasets import load_dataset
50
+
51
+ # Load the complete dataset
52
+ dataset = load_dataset("Y-TARL/BioGraphFusion")
53
+
54
+ # Load specific task
55
+ disgenet_data = load_dataset("Y-TARL/BioGraphFusion", "Disease-Gene")
56
+ stitch_data = load_dataset("Y-TARL/BioGraphFusion", "Protein-Chemical")
57
+ umls_data = load_dataset("Y-TARL/BioGraphFusion", "umls")
58
+ ```
59
+
60
+ ## ? Citation
61
+
62
+ If you use this dataset in your research, please cite our paper:
63
+
64
+ ```bibtex
65
+ @article{lin2025biographfusion,
66
+ title={BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning},
67
+ author={Lin, Yitong and He, Jiaying and Chen, Jiahe and Zhu, Xinnan and Zheng, Jianwei and Tao, Bo},
68
+ journal={Bioinformatics},
69
+ pages={btaf408},
70
+ year={2025},
71
+ publisher={Oxford University Press}
72
+ }
73
+ ```
74
+
75
+ ## ? Related Resources
76
+
77
+ - **Paper**: [Bioinformatics](https://doi.org/10.1093/bioinformatics/btaf408)
78
+ - **Preprint**: [arXiv:2507.14468](https://arxiv.org/abs/2507.14468)
79
+ - **Code**: [GitHub Repository](https://github.com/Y-TARL/BioGraphFusion)
80
+
81
+ ## ? License
82
+
83
+ This dataset is released under the Apache 2.0 License.
84
+
85
+ ## ? Acknowledgements
86
+
87
+ We thank the original data providers:
88
+
89
+ - DisGeNet for disease-gene associations
90
+ - STITCH for protein-chemical interactions
91
+ - UMLS for medical ontology data
92
+
93
+ ## ? Contact
94
+
95
+ For questions about the dataset, please open an issue in the [GitHub repository](https://github.com/Y-TARL/BioGraphFusion/issues).