TARL Y
commited on
Commit
·
eeee088
1
Parent(s):
6613261
Add BioGraphFusion dataset
Browse files
README.md
CHANGED
|
@@ -1,3 +1,95 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# BioGraphFusion Dataset
|
| 2 |
+
|
| 3 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 4 |
+
[](https://doi.org/10.1093/bioinformatics/btaf408)
|
| 5 |
+
[](https://arxiv.org/abs/2507.14468)
|
| 6 |
+
|
| 7 |
+
## ? Dataset Description
|
| 8 |
+
|
| 9 |
+
This dataset contains the benchmark data used in the paper **"BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning"** published in *Bioinformatics*.
|
| 10 |
+
|
| 11 |
+
## ?? Dataset Structure
|
| 12 |
+
|
| 13 |
+
The dataset includes three biomedical knowledge graph completion tasks with background knowledge integration:
|
| 14 |
+
|
| 15 |
+
### 1. Disease-Gene Prediction (DisGeNet_cv)
|
| 16 |
+
|
| 17 |
+
- **Task**: Disease-gene association prediction
|
| 18 |
+
- **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Protein-Chemical relationships from STITCH (277,745 triples)
|
| 19 |
+
- **Main Dataset**: DisGeNet (130,820 triples) focusing on gene targets
|
| 20 |
+
- **Description**: Predicts disease-gene associations using multi-source biological knowledge
|
| 21 |
+
|
| 22 |
+
### 2. Protein-Chemical Interaction (STITCH)
|
| 23 |
+
|
| 24 |
+
- **Task**: Protein-chemical interaction prediction
|
| 25 |
+
- **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Disease-Gene relationships from DisGeNet (130,820 triples)
|
| 26 |
+
- **Main Dataset**: STITCH (23,074 triples) focusing on chemical targets
|
| 27 |
+
- **Description**: Predicts protein-chemical interactions with integrated disease and gene knowledge
|
| 28 |
+
|
| 29 |
+
### 3. Medical Ontology Reasoning (UMLS)
|
| 30 |
+
|
| 31 |
+
- **Task**: Medical concept reasoning
|
| 32 |
+
- **Background Knowledge**: Various medical relationships from UMLS (4,006 triples)
|
| 33 |
+
- **Main Dataset**: UMLS (2,523 triples) with multi-domain entities
|
| 34 |
+
- **Description**: Reasons about medical concepts and their hierarchical relationships
|
| 35 |
+
|
| 36 |
+
## ? Dataset Statistics
|
| 37 |
+
|
| 38 |
+
| Dataset | Task | Background Knowledge Sources | Main Dataset Targets | Total Triples |
|
| 39 |
+
|---------|------|------------------------------|---------------------|---------------|
|
| 40 |
+
| **Disease-Gene Prediction** | Disease-gene association prediction | Drug-Disease Relationships SIDER (14,631) + Protein-Chemical Relationships STITCH (277,745) | DisGeNet (130,820) Gene | ~423K |
|
| 41 |
+
| **Protein-Chemical Interaction** | Protein-chemical interaction prediction | Drug-Disease Relationships SIDER (14,631) + Disease-Gene Relationships DisGeNet (130,820) | STITCH (23,074) Chemical | ~168K |
|
| 42 |
+
| **Medical Ontology Reasoning** | Medical concept reasoning | Various Medical Relationships UMLS (4,006) | UMLS (2,523) Multi-domain Entities | ~6.5K |
|
| 43 |
+
|
| 44 |
+
## ? Usage
|
| 45 |
+
|
| 46 |
+
### Loading the Dataset
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from datasets import load_dataset
|
| 50 |
+
|
| 51 |
+
# Load the complete dataset
|
| 52 |
+
dataset = load_dataset("Y-TARL/BioGraphFusion")
|
| 53 |
+
|
| 54 |
+
# Load specific task
|
| 55 |
+
disgenet_data = load_dataset("Y-TARL/BioGraphFusion", "Disease-Gene")
|
| 56 |
+
stitch_data = load_dataset("Y-TARL/BioGraphFusion", "Protein-Chemical")
|
| 57 |
+
umls_data = load_dataset("Y-TARL/BioGraphFusion", "umls")
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
## ? Citation
|
| 61 |
+
|
| 62 |
+
If you use this dataset in your research, please cite our paper:
|
| 63 |
+
|
| 64 |
+
```bibtex
|
| 65 |
+
@article{lin2025biographfusion,
|
| 66 |
+
title={BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning},
|
| 67 |
+
author={Lin, Yitong and He, Jiaying and Chen, Jiahe and Zhu, Xinnan and Zheng, Jianwei and Tao, Bo},
|
| 68 |
+
journal={Bioinformatics},
|
| 69 |
+
pages={btaf408},
|
| 70 |
+
year={2025},
|
| 71 |
+
publisher={Oxford University Press}
|
| 72 |
+
}
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## ? Related Resources
|
| 76 |
+
|
| 77 |
+
- **Paper**: [Bioinformatics](https://doi.org/10.1093/bioinformatics/btaf408)
|
| 78 |
+
- **Preprint**: [arXiv:2507.14468](https://arxiv.org/abs/2507.14468)
|
| 79 |
+
- **Code**: [GitHub Repository](https://github.com/Y-TARL/BioGraphFusion)
|
| 80 |
+
|
| 81 |
+
## ? License
|
| 82 |
+
|
| 83 |
+
This dataset is released under the Apache 2.0 License.
|
| 84 |
+
|
| 85 |
+
## ? Acknowledgements
|
| 86 |
+
|
| 87 |
+
We thank the original data providers:
|
| 88 |
+
|
| 89 |
+
- DisGeNet for disease-gene associations
|
| 90 |
+
- STITCH for protein-chemical interactions
|
| 91 |
+
- UMLS for medical ontology data
|
| 92 |
+
|
| 93 |
+
## ? Contact
|
| 94 |
+
|
| 95 |
+
For questions about the dataset, please open an issue in the [GitHub repository](https://github.com/Y-TARL/BioGraphFusion/issues).
|