Datasets:
Upload vivqa.py with huggingface_hub
Browse files
vivqa.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from seacrowd.utils import schemas
|
| 11 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 12 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 13 |
+
|
| 14 |
+
_CITATION = """\
|
| 15 |
+
@inproceedings{tran2021vivqa,
|
| 16 |
+
title={ViVQA: Vietnamese visual question answering},
|
| 17 |
+
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet},
|
| 18 |
+
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation},
|
| 19 |
+
pages={683--691},
|
| 20 |
+
year={2021}
|
| 21 |
+
}
|
| 22 |
+
"""
|
| 23 |
+
_DATASETNAME = "vivqa"
|
| 24 |
+
_DESCRIPTION = """\
|
| 25 |
+
Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer
|
| 26 |
+
pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly
|
| 27 |
+
selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that
|
| 28 |
+
was automatically translated from English to Vietnamese.
|
| 29 |
+
"""
|
| 30 |
+
_HOMEPAGE = "https://github.com/kh4nh12/ViVQA"
|
| 31 |
+
_LANGUAGES = ["vie"]
|
| 32 |
+
_LICENSE = Licenses.UNKNOWN.value
|
| 33 |
+
_LOCAL = False
|
| 34 |
+
_URLS = {
|
| 35 |
+
"viviq": {"train": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/train.csv",
|
| 36 |
+
"test": "https://raw.githubusercontent.com/kh4nh12/ViVQA/main/test.csv"},
|
| 37 |
+
"cocodata": {
|
| 38 |
+
"coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip",
|
| 39 |
+
"coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip",
|
| 40 |
+
"coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip",
|
| 41 |
+
},
|
| 42 |
+
}
|
| 43 |
+
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING]
|
| 44 |
+
_SOURCE_VERSION = "1.0.0"
|
| 45 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class VivQADataset(datasets.GeneratorBasedBuilder):
|
| 49 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 50 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 51 |
+
|
| 52 |
+
BUILDER_CONFIGS = [
|
| 53 |
+
SEACrowdConfig(
|
| 54 |
+
name=f"{_DATASETNAME}_source",
|
| 55 |
+
version=SOURCE_VERSION,
|
| 56 |
+
description=f"{_DATASETNAME} source schema",
|
| 57 |
+
schema="source",
|
| 58 |
+
subset_id=f"{_DATASETNAME}",
|
| 59 |
+
),
|
| 60 |
+
SEACrowdConfig(
|
| 61 |
+
name=f"{_DATASETNAME}_seacrowd_imqa",
|
| 62 |
+
version=SEACROWD_VERSION,
|
| 63 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 64 |
+
schema="seacrowd_imqa",
|
| 65 |
+
subset_id=f"{_DATASETNAME}",
|
| 66 |
+
),
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 70 |
+
|
| 71 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 72 |
+
|
| 73 |
+
if self.config.schema == "source":
|
| 74 |
+
features = datasets.Features(
|
| 75 |
+
{
|
| 76 |
+
"img_id": datasets.Value("string"),
|
| 77 |
+
"question": datasets.Value("string"),
|
| 78 |
+
"answer": datasets.Value("string"),
|
| 79 |
+
"type": datasets.Value("string"),
|
| 80 |
+
"coco_url": datasets.Value("string"),
|
| 81 |
+
"flickr_url": datasets.Value("string"),
|
| 82 |
+
"img_name": datasets.Value("string"),
|
| 83 |
+
"coco_license": datasets.Value("int32"),
|
| 84 |
+
"coco_width": datasets.Value("int32"),
|
| 85 |
+
"coco_height": datasets.Value("int32"),
|
| 86 |
+
"coco_date_captured": datasets.Value("string"),
|
| 87 |
+
"image_path": datasets.Value("string"),
|
| 88 |
+
}
|
| 89 |
+
)
|
| 90 |
+
elif self.config.schema == "seacrowd_imqa":
|
| 91 |
+
features = schemas.imqa_features
|
| 92 |
+
features["meta"] = {
|
| 93 |
+
"coco_img_id": datasets.Value("string"),
|
| 94 |
+
"type": datasets.Value("string"),
|
| 95 |
+
"flickr_url": datasets.Value("string"),
|
| 96 |
+
"coco_url": datasets.Value("string"),
|
| 97 |
+
"img_name": datasets.Value("string"),
|
| 98 |
+
"coco_license": datasets.Value("int32"),
|
| 99 |
+
"coco_width": datasets.Value("int32"),
|
| 100 |
+
"coco_height": datasets.Value("int32"),
|
| 101 |
+
"coco_date_captured": datasets.Value("string"),
|
| 102 |
+
"image_path": datasets.Value("string"),
|
| 103 |
+
}
|
| 104 |
+
else:
|
| 105 |
+
raise ValueError(f"No schema matched for {self.config.schema}")
|
| 106 |
+
|
| 107 |
+
return datasets.DatasetInfo(
|
| 108 |
+
description=_DESCRIPTION,
|
| 109 |
+
features=features,
|
| 110 |
+
homepage=_HOMEPAGE,
|
| 111 |
+
license=_LICENSE,
|
| 112 |
+
citation=_CITATION,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 116 |
+
"""Returns SplitGenerators."""
|
| 117 |
+
urls = _URLS["viviq"]
|
| 118 |
+
data_dir = dl_manager.download_and_extract(urls)
|
| 119 |
+
cocodata = dl_manager.download_and_extract(_URLS["cocodata"])
|
| 120 |
+
Coco_Dict = self._get_image_detail(cocodata)
|
| 121 |
+
|
| 122 |
+
return [
|
| 123 |
+
datasets.SplitGenerator(
|
| 124 |
+
name=datasets.Split.TRAIN,
|
| 125 |
+
gen_kwargs={
|
| 126 |
+
"filepath": data_dir["train"],
|
| 127 |
+
"split": "train",
|
| 128 |
+
"coco_dict": Coco_Dict,
|
| 129 |
+
},
|
| 130 |
+
),
|
| 131 |
+
datasets.SplitGenerator(
|
| 132 |
+
name=datasets.Split.TEST,
|
| 133 |
+
gen_kwargs={
|
| 134 |
+
"filepath": data_dir["test"],
|
| 135 |
+
"split": "test",
|
| 136 |
+
"coco_dict": Coco_Dict,
|
| 137 |
+
},
|
| 138 |
+
),
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
def _get_image_detail(self, coco_dir) -> Dict:
|
| 142 |
+
coco2014_train_val_annots = os.path.join(coco_dir["coco2014_train_val_annots"], "annotations")
|
| 143 |
+
train_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_train2014.json")
|
| 144 |
+
val_ann_2014_path = os.path.join(coco2014_train_val_annots, "captions_val2014.json")
|
| 145 |
+
coco_dict_val = {itm["id"]: itm for itm in json.load(open(val_ann_2014_path, "r"))["images"]}
|
| 146 |
+
coco_dict_train = {itm["id"]: itm for itm in json.load(open(train_ann_2014_path, "r"))["images"]}
|
| 147 |
+
coco_train_path = os.path.join(coco_dir["coco2014_train_images"], "train2014")
|
| 148 |
+
coco_val_path = os.path.join(coco_dir["coco2014_val_images"], "val2014")
|
| 149 |
+
coco_dict = {"train": coco_dict_train, "val": coco_dict_val, "coco_train_path": coco_train_path, "coco_val_path": coco_val_path}
|
| 150 |
+
|
| 151 |
+
return coco_dict
|
| 152 |
+
|
| 153 |
+
def _generate_examples(self, filepath: Path, split: str, coco_dict: Dict = None) -> Tuple[int, Dict]:
|
| 154 |
+
"""Yields examples as (key, example) tuples."""
|
| 155 |
+
|
| 156 |
+
raw_examples = pd.read_csv(filepath)
|
| 157 |
+
coco_train_ref = coco_dict["train"]
|
| 158 |
+
coco_val_ref = coco_dict["val"]
|
| 159 |
+
coco_ref = {**coco_train_ref, **coco_val_ref}
|
| 160 |
+
coco_train_path = coco_dict["coco_train_path"]
|
| 161 |
+
coco_val_path = coco_dict["coco_val_path"]
|
| 162 |
+
|
| 163 |
+
for eid, exam in raw_examples.iterrows():
|
| 164 |
+
assert len(exam) == 5
|
| 165 |
+
exam_id, exam_quest, exam_answer, exam_img_id, exam_type = exam
|
| 166 |
+
coco_info = coco_ref[exam_img_id]
|
| 167 |
+
flickr_url = coco_info["flickr_url"]
|
| 168 |
+
img_name = coco_info["file_name"]
|
| 169 |
+
coco_url = coco_info["coco_url"]
|
| 170 |
+
coco_license = coco_info["license"]
|
| 171 |
+
coco_width = coco_info["width"]
|
| 172 |
+
coco_height = coco_info["height"]
|
| 173 |
+
coco_date_captured = coco_info["date_captured"]
|
| 174 |
+
coco_path = coco_train_path if exam_img_id in coco_train_ref else coco_val_path
|
| 175 |
+
image_path = os.path.join(coco_path, img_name)
|
| 176 |
+
|
| 177 |
+
if self.config.schema == "source":
|
| 178 |
+
yield eid, {
|
| 179 |
+
"img_id": str(exam_img_id),
|
| 180 |
+
"question": exam_quest,
|
| 181 |
+
"answer": exam_answer,
|
| 182 |
+
"type": exam_type,
|
| 183 |
+
"coco_url": coco_url,
|
| 184 |
+
"flickr_url": flickr_url,
|
| 185 |
+
"img_name": img_name,
|
| 186 |
+
"coco_license": coco_license,
|
| 187 |
+
"coco_width": coco_width,
|
| 188 |
+
"coco_height": coco_height,
|
| 189 |
+
"coco_date_captured": coco_date_captured,
|
| 190 |
+
"image_path": image_path,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
elif self.config.schema == "seacrowd_imqa":
|
| 194 |
+
example = {
|
| 195 |
+
"id": str(eid),
|
| 196 |
+
"question_id": str(exam_id),
|
| 197 |
+
"document_id": str(eid),
|
| 198 |
+
"questions": [exam_quest],
|
| 199 |
+
"type": None,
|
| 200 |
+
"choices": None,
|
| 201 |
+
"context": None,
|
| 202 |
+
"answer": [exam_answer],
|
| 203 |
+
"image_paths": [image_path],
|
| 204 |
+
"meta": {
|
| 205 |
+
"coco_img_id": str(exam_img_id),
|
| 206 |
+
"type": exam_type,
|
| 207 |
+
"flickr_url": flickr_url,
|
| 208 |
+
"coco_url": coco_url,
|
| 209 |
+
"img_name": img_name,
|
| 210 |
+
"coco_license": coco_license,
|
| 211 |
+
"coco_width": coco_width,
|
| 212 |
+
"coco_height": coco_height,
|
| 213 |
+
"coco_date_captured": coco_date_captured,
|
| 214 |
+
"image_path": image_path,
|
| 215 |
+
},
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
yield eid, example
|