Upload unisent.py with huggingface_hub
Browse files- unisent.py +292 -0
unisent.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
|
| 9 |
+
from seacrowd.utils import schemas
|
| 10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 12 |
+
|
| 13 |
+
_CITATION = """\
|
| 14 |
+
@inproceedings{asgari2020unisent,
|
| 15 |
+
title={UniSent: Universal Adaptable Sentiment Lexica for 1000+ Languages},
|
| 16 |
+
author={Asgari, Ehsaneddin and Braune, Fabienne and Ringlstetter, Christoph and Mofrad, Mohammad RK},
|
| 17 |
+
booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC-2020)},
|
| 18 |
+
year={2020},
|
| 19 |
+
organization={European Language Resources Association (ELRA)}
|
| 20 |
+
}
|
| 21 |
+
"""
|
| 22 |
+
_DATASETNAME = "unisent"
|
| 23 |
+
_DESCRIPTION = """\
|
| 24 |
+
UniSent is a universal sentiment lexica for 1000+ languages.
|
| 25 |
+
To build UniSent, the authors use a massively parallel Bible
|
| 26 |
+
corpus to project sentiment information from English to other
|
| 27 |
+
languages for sentiment analysis on Twitter data. 173 of 1404
|
| 28 |
+
languages are spoken in Southeast Asia
|
| 29 |
+
"""
|
| 30 |
+
_URLS = "https://raw.githubusercontent.com/ehsanasgari/UniSent/master/unisent_lexica_v1/{}_unisent_lexicon.txt"
|
| 31 |
+
_HOMEPAGE = "https://github.com/ehsanasgari/UniSent"
|
| 32 |
+
_LANGUAGES = [
|
| 33 |
+
'aaz',
|
| 34 |
+
'abx',
|
| 35 |
+
'ace',
|
| 36 |
+
'acn',
|
| 37 |
+
'agn',
|
| 38 |
+
'agt',
|
| 39 |
+
'ahk',
|
| 40 |
+
'akb',
|
| 41 |
+
'alj',
|
| 42 |
+
'alp',
|
| 43 |
+
'amk',
|
| 44 |
+
'aoz',
|
| 45 |
+
'atb',
|
| 46 |
+
'atd',
|
| 47 |
+
'att',
|
| 48 |
+
'ban',
|
| 49 |
+
'bbc',
|
| 50 |
+
'bcl',
|
| 51 |
+
'bgr',
|
| 52 |
+
'bgs',
|
| 53 |
+
'bgz',
|
| 54 |
+
'bhp',
|
| 55 |
+
'bkd',
|
| 56 |
+
'bku',
|
| 57 |
+
'blw',
|
| 58 |
+
'blz',
|
| 59 |
+
'bnj',
|
| 60 |
+
'bpr',
|
| 61 |
+
'bps',
|
| 62 |
+
'bru',
|
| 63 |
+
'btd',
|
| 64 |
+
'bth',
|
| 65 |
+
'bto',
|
| 66 |
+
'bts',
|
| 67 |
+
'btx',
|
| 68 |
+
'bug',
|
| 69 |
+
'bvz',
|
| 70 |
+
'bzi',
|
| 71 |
+
'cbk',
|
| 72 |
+
'ceb',
|
| 73 |
+
'cfm',
|
| 74 |
+
'cgc',
|
| 75 |
+
'clu',
|
| 76 |
+
'cmo',
|
| 77 |
+
'cnh',
|
| 78 |
+
'cnw',
|
| 79 |
+
'csy',
|
| 80 |
+
'ctd',
|
| 81 |
+
'czt',
|
| 82 |
+
'dgc',
|
| 83 |
+
'dtp',
|
| 84 |
+
'due',
|
| 85 |
+
'duo',
|
| 86 |
+
'ebk',
|
| 87 |
+
'fil',
|
| 88 |
+
'gbi',
|
| 89 |
+
'gdg',
|
| 90 |
+
'gor',
|
| 91 |
+
'heg',
|
| 92 |
+
'hil',
|
| 93 |
+
'hlt',
|
| 94 |
+
'hnj',
|
| 95 |
+
'hnn',
|
| 96 |
+
'hvn',
|
| 97 |
+
'iba',
|
| 98 |
+
'ifa',
|
| 99 |
+
'ifb',
|
| 100 |
+
'ifk',
|
| 101 |
+
'ifu',
|
| 102 |
+
'ify',
|
| 103 |
+
'ilo',
|
| 104 |
+
'ind',
|
| 105 |
+
'iry',
|
| 106 |
+
'isd',
|
| 107 |
+
'itv',
|
| 108 |
+
'ium',
|
| 109 |
+
'ivb',
|
| 110 |
+
'ivv',
|
| 111 |
+
'jav',
|
| 112 |
+
'jra',
|
| 113 |
+
'kac',
|
| 114 |
+
'khm',
|
| 115 |
+
'kix',
|
| 116 |
+
'kje',
|
| 117 |
+
'kmk',
|
| 118 |
+
'kne',
|
| 119 |
+
'kqe',
|
| 120 |
+
'krj',
|
| 121 |
+
'ksc',
|
| 122 |
+
'ksw',
|
| 123 |
+
'kxm',
|
| 124 |
+
'lao',
|
| 125 |
+
'lbk',
|
| 126 |
+
'lew',
|
| 127 |
+
'lex',
|
| 128 |
+
'lhi',
|
| 129 |
+
'lhu',
|
| 130 |
+
'ljp',
|
| 131 |
+
'lsi',
|
| 132 |
+
'lus',
|
| 133 |
+
'mad',
|
| 134 |
+
'mak',
|
| 135 |
+
'mbb',
|
| 136 |
+
'mbd',
|
| 137 |
+
'mbf',
|
| 138 |
+
'mbi',
|
| 139 |
+
'mbs',
|
| 140 |
+
'mbt',
|
| 141 |
+
'mej',
|
| 142 |
+
'mkn',
|
| 143 |
+
'mmn',
|
| 144 |
+
'mnb',
|
| 145 |
+
'mnx',
|
| 146 |
+
'mog',
|
| 147 |
+
'mqj',
|
| 148 |
+
'mqy',
|
| 149 |
+
'mrw',
|
| 150 |
+
'msb',
|
| 151 |
+
'msk',
|
| 152 |
+
'msm',
|
| 153 |
+
'mta',
|
| 154 |
+
'mtg',
|
| 155 |
+
'mtj',
|
| 156 |
+
'mvp',
|
| 157 |
+
'mwq',
|
| 158 |
+
'mwv',
|
| 159 |
+
'mya',
|
| 160 |
+
'nbe',
|
| 161 |
+
'nfa',
|
| 162 |
+
'nia',
|
| 163 |
+
'nij',
|
| 164 |
+
'nlc',
|
| 165 |
+
'npy',
|
| 166 |
+
'obo',
|
| 167 |
+
'pag',
|
| 168 |
+
'pam',
|
| 169 |
+
'plw',
|
| 170 |
+
'pmf',
|
| 171 |
+
'pne',
|
| 172 |
+
'ppk',
|
| 173 |
+
'prf',
|
| 174 |
+
'prk',
|
| 175 |
+
'pse',
|
| 176 |
+
'ptu',
|
| 177 |
+
'pww',
|
| 178 |
+
'sas',
|
| 179 |
+
'sbl',
|
| 180 |
+
'sda',
|
| 181 |
+
'sgb',
|
| 182 |
+
'smk',
|
| 183 |
+
'sml',
|
| 184 |
+
'sun',
|
| 185 |
+
'sxn',
|
| 186 |
+
'szb',
|
| 187 |
+
'tbl',
|
| 188 |
+
'tby',
|
| 189 |
+
'tcz',
|
| 190 |
+
'tdt',
|
| 191 |
+
'tgl',
|
| 192 |
+
'tha',
|
| 193 |
+
'tih',
|
| 194 |
+
'tlb',
|
| 195 |
+
'twu',
|
| 196 |
+
'urk',
|
| 197 |
+
'vie',
|
| 198 |
+
'war',
|
| 199 |
+
'whk',
|
| 200 |
+
'wrs',
|
| 201 |
+
'xbr',
|
| 202 |
+
'yli',
|
| 203 |
+
'yva',
|
| 204 |
+
'zom',
|
| 205 |
+
'zyp']
|
| 206 |
+
|
| 207 |
+
_LICENSE = Licenses.CC_BY_NC_ND_4_0.value # cc-by-nc-nd-4.0
|
| 208 |
+
_LOCAL = False
|
| 209 |
+
|
| 210 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
| 211 |
+
|
| 212 |
+
_SOURCE_VERSION = "1.0.0"
|
| 213 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class UniSentDataset(datasets.GeneratorBasedBuilder):
|
| 217 |
+
LABELS = ["NEGATIVE", "POSITIVE"]
|
| 218 |
+
|
| 219 |
+
BUILDER_CONFIGS = [
|
| 220 |
+
SEACrowdConfig(
|
| 221 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
| 222 |
+
version=datasets.Version(_SOURCE_VERSION),
|
| 223 |
+
description=_DESCRIPTION, schema="source",
|
| 224 |
+
subset_id=f"{_DATASETNAME}_{lang}"
|
| 225 |
+
)
|
| 226 |
+
for lang in _LANGUAGES
|
| 227 |
+
] + [
|
| 228 |
+
SEACrowdConfig(
|
| 229 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_text",
|
| 230 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 231 |
+
description=_DESCRIPTION,
|
| 232 |
+
schema="seacrowd_text",
|
| 233 |
+
subset_id=f"{_DATASETNAME}_{lang}"
|
| 234 |
+
)
|
| 235 |
+
for lang in _LANGUAGES
|
| 236 |
+
]
|
| 237 |
+
|
| 238 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 239 |
+
|
| 240 |
+
if self.config.schema == "source":
|
| 241 |
+
features = datasets.Features(
|
| 242 |
+
{
|
| 243 |
+
"word": datasets.Value("string"),
|
| 244 |
+
"lexicon": datasets.Value("string"),
|
| 245 |
+
}
|
| 246 |
+
)
|
| 247 |
+
elif self.config.schema == "seacrowd_text":
|
| 248 |
+
features = schemas.text_features(label_names=self.LABELS)
|
| 249 |
+
else:
|
| 250 |
+
raise Exception(f"Unsupported schema: {self.config.schema}")
|
| 251 |
+
|
| 252 |
+
return datasets.DatasetInfo(
|
| 253 |
+
description=_DESCRIPTION,
|
| 254 |
+
features=features,
|
| 255 |
+
homepage=_HOMEPAGE,
|
| 256 |
+
license=_LICENSE,
|
| 257 |
+
citation=_CITATION,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 261 |
+
lang = self.config.subset_id.split("_")[-1]
|
| 262 |
+
url = _URLS.format(lang)
|
| 263 |
+
data_dir = dl_manager.download_and_extract(url)
|
| 264 |
+
return [
|
| 265 |
+
datasets.SplitGenerator(
|
| 266 |
+
name=datasets.Split.TRAIN,
|
| 267 |
+
gen_kwargs={
|
| 268 |
+
"filepath": data_dir,
|
| 269 |
+
},
|
| 270 |
+
),
|
| 271 |
+
]
|
| 272 |
+
|
| 273 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
| 274 |
+
with open(filepath, "r", encoding="utf-8") as filein:
|
| 275 |
+
data_instances = [inst.strip("\n").split("\t") for inst in filein.readlines()]
|
| 276 |
+
|
| 277 |
+
for di_idx, data_instance in enumerate(data_instances):
|
| 278 |
+
word, lexicon = data_instance
|
| 279 |
+
if self.config.schema == "source":
|
| 280 |
+
yield di_idx, {"word": word, "lexicon": lexicon}
|
| 281 |
+
elif self.config.schema == "seacrowd_text":
|
| 282 |
+
yield di_idx, {"id": di_idx, "text": word, "label": self.LABELS[self._clip_label(int(lexicon))]}
|
| 283 |
+
else:
|
| 284 |
+
raise Exception(f"Unsupported schema: {self.config.schema}")
|
| 285 |
+
|
| 286 |
+
@staticmethod
|
| 287 |
+
def _clip_label(label: int) -> int:
|
| 288 |
+
"""
|
| 289 |
+
Original labels are -1, +1.
|
| 290 |
+
Clip the label to 0 or 1 to get right index.
|
| 291 |
+
"""
|
| 292 |
+
return 0 if int(label) < 0 else 1
|