Datasets:

Modalities:
Tabular
Text
Formats:
arrow
ArXiv:
Libraries:
Datasets
License:
jw2yang commited on
Commit
bef5015
·
verified ·
1 Parent(s): 1020616

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -5
README.md CHANGED
@@ -4,15 +4,70 @@ task_categories:
4
  - robotics
5
  ---
6
 
7
- This dataset contains robot manipulation data from multiple sources, preserving the original folder hierarchy and individual files.
 
8
 
9
- ## Dataset Structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
- The dataset is organized by source datasets, with each source containing one or more arrow files.
12
 
13
  ### Features
14
 
15
- The dataset contains the following fields:
 
16
  - `dataset_name`: Original source dataset name
17
  - `image`: Image of the robot scene (binary)
18
  - `task_string`: Description of the task
@@ -20,4 +75,20 @@ The dataset contains the following fields:
20
  - `traj_index`: Index of the trajectory in the dataset
21
  - `action`: Robot action vector (serialized numpy array)
22
  - `trace`: Robot trajectory trace (serialized numpy array)
23
- - `trace_visibility`: Visibility mask for the trace (serialized numpy array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - robotics
5
  ---
6
 
7
+ <div align="center">
8
+ <h2>Magma: A Foundation Model for Multimodal AI Agents</h2>
9
 
10
+ [Jianwei Yang](https://jwyang.github.io/)<sup>*</sup><sup>1</sup><sup>†</sup>&nbsp;
11
+ [Reuben Tan](https://cs-people.bu.edu/rxtan/)<sup>1</sup><sup>†</sup>&nbsp;
12
+ [Qianhui Wu](https://qianhuiwu.github.io/)<sup>1</sup><sup>†</sup>&nbsp;
13
+ [Ruijie Zheng](https://ruijiezheng.com/)<sup>2</sup><sup>‡</sup>&nbsp;
14
+ [Baolin Peng](https://scholar.google.com/citations?user=u1CNjgwAAAAJ&hl=en&oi=ao)<sup>1</sup><sup>‡</sup>&nbsp;
15
+ [Yongyuan Liang](https://cheryyunl.github.io)<sup>2</sup><sup>‡</sup>
16
+
17
+ [Yu Gu](http://yu-gu.me/)<sup>1</sup>&nbsp;
18
+ [Mu Cai](https://pages.cs.wisc.edu/~mucai/)<sup>3</sup>&nbsp;
19
+ [Seonghyeon Ye](https://seonghyeonye.github.io/)<sup>4</sup>&nbsp;
20
+ [Joel Jang](https://joeljang.github.io/)<sup>5</sup>&nbsp;
21
+ [Yuquan Deng](https://scholar.google.com/citations?user=LTC0Q6YAAAAJ&hl=en)<sup>5</sup>&nbsp;
22
+ [Lars Liden](https://sites.google.com/site/larsliden)<sup>1</sup>&nbsp;
23
+ [Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)<sup>1</sup><sup>▽</sup>
24
+
25
+ <sup>1</sup> Microsoft Research; <sup>2</sup> University of Maryland; <sup>3</sup> University of Wisconsin-Madison
26
+ <sup>4</sup> KAIST; <sup>5</sup> University of Washington
27
+
28
+ <sup>*</sup> Project lead <sup>†</sup> First authors <sup>‡</sup> Second authors <sup>▽</sup> Leadership
29
+
30
+ \[[arXiv Paper](https://www.arxiv.org/pdf/2502.13130)\] &nbsp; \[[Project Page](https://microsoft.github.io/Magma/)\] &nbsp; \[[Hugging Face Paper](https://huggingface.co/papers/2502.13130)\] &nbsp; \[[Github Repo](https://github.com/microsoft/Magma)\] &nbsp; \[[Video](https://www.youtube.com/watch?v=SbfzvUU5yM8)\]
31
+
32
+ </div>
33
+
34
+ ## Introduction
35
+
36
+ This dataset contains the robotic manipulation data used in Magma pretraining. For fair comparison, we followed OpenVLA to use the data mix "siglip-224px+mx-oxe-magic-soup".
37
+
38
+ The dataset is organized by following source datasets, with each source containing one or more arrow files:
39
+
40
+ | Folder | Number of Shards |
41
+ |:------------------------------------------------------|-------------------:|
42
+ | austin_buds_dataset_converted_externally_to_rlds | 1 |
43
+ | austin_sailor_dataset_converted_externally_to_rlds | 4 |
44
+ | austin_sirius_dataset_converted_externally_to_rlds | 3 |
45
+ | berkeley_autolab_ur5 | 1 |
46
+ | berkeley_cable_routing | 1 |
47
+ | berkeley_fanuc_manipulation | 1 |
48
+ | bridge_orig | 17 |
49
+ | cmu_stretch | 1 |
50
+ | dlr_edan_shared_control_converted_externally_to_rlds | 1 |
51
+ | fractal20220817_data | 21 |
52
+ | furniture_bench_dataset_converted_externally_to_rlds | 4 |
53
+ | iamlab_cmu_pickup_insert_converted_externally_to_rlds | 2 |
54
+ | jaco_play | 1 |
55
+ | kuka | 21 |
56
+ | language_table | 8 |
57
+ | nyu_franka_play_dataset_converted_externally_to_rlds | 1 |
58
+ | roboturk | 3 |
59
+ | stanford_hydra_dataset_converted_externally_to_rlds | 4 |
60
+ | taco_play | 3 |
61
+ | toto | 3 |
62
+ | ucsd_kitchen_dataset_converted_externally_to_rlds | 1 |
63
+ | utaustin_mutex | 4 |
64
+ | viola | 1 |
65
 
 
66
 
67
  ### Features
68
 
69
+ In addition to the default features, we extracted the visual traces of future 16 frames for each frame. The dataset contains the following fields:
70
+
71
  - `dataset_name`: Original source dataset name
72
  - `image`: Image of the robot scene (binary)
73
  - `task_string`: Description of the task
 
75
  - `traj_index`: Index of the trajectory in the dataset
76
  - `action`: Robot action vector (serialized numpy array)
77
  - `trace`: Robot trajectory trace (serialized numpy array)
78
+ - `trace_visibility`: Visibility mask for the trace (serialized numpy array)
79
+
80
+ ## Dataset Loading
81
+
82
+ We can load the full data using:
83
+
84
+ ```py
85
+ from datasets import load_dataset
86
+ dataset = load_dataset("MagmaAI/Magma-OXE-ToM", streaming=True, split="train")
87
+ ```
88
+
89
+ or specify a dataset by:
90
+
91
+ ```py
92
+ from datasets import load_dataset
93
+ dataset = load_dataset("MagmaAI/Magma-OXE-ToM", data_dir="austin_buds_dataset_converted_externally_to_rlds", streaming=True, split="train")
94
+ ```