--- license: mit --- # HC-Bench **HC-Bench** is a compact multi-part image benchmark for evaluating recognition and prompting robustness, especially in **hidden-content** scenes. It contains: - **object/** — 56 base images and 56 *hidden* variants of the same lemmas, plus prompts and metadata. - **text/** — 56 Latin/English and 56 Chinese lemma–description pairs with matching PNGs. - **wild/** — 53 in-the-wild images for additional generalization checks. --- ## Repository structure ``` HC-Bench/ ├─ object/ │ ├─ base/ # 56 base images (7 types × 8 lemmas) │ ├─ hidden/ # 56 hidden-content variants (same lemmas) │ ├─ image\_base.txt # 7 types and their 8 lemmas each │ ├─ image\_generate\_prompts.txt# per-lemma scene prompts used for generation │ └─ lemmas\_descriptions.json # \[{Type, Lemma, Description}] × 56 ├─ text/ │ ├─ Latin/ # 28 English PNGs │ ├─ Chinese/ # 28 Chinese PNGs │ ├─ English\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description) │ └─ Chinese\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description) └─ wild/ # 53 PNGs ```` --- ## Contents ### `object/` - **`base/`**: Canonical image per lemma (e.g., `Apple.jpg`, `Einstein.png`). - **`hidden/`**: Composite/camouflaged image for the *same* lemma set (e.g., `apple.png`, `einstein.png`). - **`image_base.txt`**: The 7 high-level types and their 8 lemmas each (Humans, Species, Buildings, Cartoon, Furniture, Transports, Food). - **`image_generate_prompts.txt`**: Per-lemma prompts used to compose/generate scenes (e.g., *“A monorail cutting through a futuristic city with elevated walkways”* for `notredame`). - **`lemmas_descriptions.json`**: Minimal metadata with `{Type, Lemma, Description}` aligned 1:1 with the 56 lemmas. ### `text/` - **`Latin/`** & **`Chinese/`**: 28 images each (total 56). - **`English_text.json`** & **`Chinese_text.json`**: 56-entry lists pairing lemmas to descriptions in two languages. (Note: The `English_text.json`/`Chinese_text.json` files include extra fields `Length` and `Rarity` for flexibility.) ### `wild/` - 53 natural/urban scenes for robustness and transfer evaluation. --- ## Quick start (🤗 Datasets) > HC-Bench uses the **ImageFolder**/“imagefolder” style. Class labels are inferred from directory names when present (e.g., `base`, `hidden`). If you prefer raw images without labels, pass `drop_labels=True`. ### Load **object/base** and **object/hidden** ```python from datasets import load_dataset base = load_dataset( "imagefolder", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*", split="train", drop_labels=True, # drop automatic label inference ) hidden = load_dataset( "imagefolder", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*", split="train", drop_labels=True, ) ```` ### Load **wild/** ```python wild = load_dataset( "imagefolder", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/wild/*", split="train", drop_labels=True, ) ``` ### Load the **JSON** metadata (English/Chinese) ```python from datasets import load_dataset en = load_dataset( "json", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/English_text.json", split="train", ) zh = load_dataset( "json", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/Chinese_text.json", split="train", ) ``` > Docs reference: `load_dataset` for JSON & files, and ImageFolder for image datasets. --- ## Pairing base/hidden with metadata Filenames differ in casing/spaces between `base/` (`Apple.jpg`) and `hidden/` (`apple.png`). Use `object/lemmas_descriptions.json` as the canonical list of 56 lemmas and join by `Lemma`: ```python import pandas as pd from datasets import load_dataset # 1) Canonical lemma list lemmas = load_dataset( "json", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/lemmas_descriptions.json", split="train", ).to_pandas() # 2) Build (lemma -> file) maps def to_lemma(name): # normalize filenames to lemma import re, os stem = os.path.splitext(os.path.basename(name))[0] return re.sub(r"\s+", "", stem).lower() base_ds = load_dataset( "imagefolder", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*", split="train", drop_labels=True, ) hidden_ds = load_dataset( "imagefolder", data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*", split="train", drop_labels=True, ) import os base_map = {to_lemma(x["image"].filename): x["image"] for x in base_ds} hidden_map= {to_lemma(x["image"].filename): x["image"] for x in hidden_ds} # 3) Join lemmas["base_image"] = lemmas["Lemma"].apply(lambda L: base_map.get(L.lower())) lemmas["hidden_image"] = lemmas["Lemma"].apply(lambda L: hidden_map.get(L.lower())) ``` --- --- ## Statistics * `object/base`: 56 images * `object/hidden`: 56 images * `text/Latin`: 28 images * `text/Chinese`: 28 images * `wild`: 53 images --- ## Citation If you use **HC-Bench**, please cite: ```bibtex @misc{li2025semvinkadvancingvlmssemantic, title={SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking}, author={Sifan Li and Yujun Cai and Yiwei Wang}, year={2025}, eprint={2506.02803}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.02803}, } ``` ---