Create genomics-long-range-benchmark.py
Browse files- genomics-long-range-benchmark.py +530 -0
genomics-long-range-benchmark.py
ADDED
|
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import urllib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import List
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from ast import literal_eval
|
| 9 |
+
|
| 10 |
+
import re
|
| 11 |
+
import datasets
|
| 12 |
+
import numpy as np
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from datasets import DatasetInfo
|
| 15 |
+
from pyfaidx import Fasta
|
| 16 |
+
from abc import ABC, abstractmethod
|
| 17 |
+
from Bio.Seq import Seq
|
| 18 |
+
from Bio import SeqIO
|
| 19 |
+
import pysam
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
--------------------------------------------------------------------------------------------
|
| 23 |
+
Reference Genome URLS:
|
| 24 |
+
-------------------------------------------------------------------------------------------
|
| 25 |
+
"""
|
| 26 |
+
H38_REFERENCE_GENOME_URL = (
|
| 27 |
+
"https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/" "hg38.fa.gz"
|
| 28 |
+
)
|
| 29 |
+
H19_REFERENCE_GENOME_URL = (
|
| 30 |
+
"https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/" "hg19.fa.gz"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
"""
|
| 34 |
+
--------------------------------------------------------------------------------------------
|
| 35 |
+
Task Specific Handlers:
|
| 36 |
+
-------------------------------------------------------------------------------------------
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
class GenomicLRATaskHandler(ABC):
|
| 40 |
+
"""
|
| 41 |
+
Abstract method for the Genomic LRA task handlers.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
@abstractmethod
|
| 45 |
+
def __init__(self, **kwargs):
|
| 46 |
+
pass
|
| 47 |
+
|
| 48 |
+
@abstractmethod
|
| 49 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 50 |
+
"""
|
| 51 |
+
Returns the DatasetInfo for the task
|
| 52 |
+
"""
|
| 53 |
+
pass
|
| 54 |
+
|
| 55 |
+
def split_generators(
|
| 56 |
+
self, dl_manager, cache_dir_root
|
| 57 |
+
) -> List[datasets.SplitGenerator]:
|
| 58 |
+
"""
|
| 59 |
+
Downloads required files using dl_manager and separates them by split.
|
| 60 |
+
"""
|
| 61 |
+
return [
|
| 62 |
+
datasets.SplitGenerator(
|
| 63 |
+
name=datasets.Split.TRAIN,
|
| 64 |
+
gen_kwargs={"handler": self, "split": "train"},
|
| 65 |
+
),
|
| 66 |
+
datasets.SplitGenerator(
|
| 67 |
+
name=datasets.Split.TEST, gen_kwargs={"handler": self, "split": "test"}
|
| 68 |
+
),
|
| 69 |
+
]
|
| 70 |
+
|
| 71 |
+
@abstractmethod
|
| 72 |
+
def generate_examples(self, split):
|
| 73 |
+
"""
|
| 74 |
+
A generator that yields examples for the specified split.
|
| 75 |
+
"""
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
@staticmethod
|
| 79 |
+
def hook(t):
|
| 80 |
+
last_b = [0]
|
| 81 |
+
|
| 82 |
+
def inner(b=1, bsize=1, tsize=None):
|
| 83 |
+
"""
|
| 84 |
+
b : int, optional
|
| 85 |
+
Number of blocks just transferred [default: 1].
|
| 86 |
+
bsize : int, optional
|
| 87 |
+
Size of each block (in tqdm units) [default: 1].
|
| 88 |
+
tsize : int, optional
|
| 89 |
+
Total size (in tqdm units). If [default: None] remains unchanged.
|
| 90 |
+
"""
|
| 91 |
+
if tsize is not None:
|
| 92 |
+
t.total = tsize
|
| 93 |
+
t.update((b - last_b[0]) * bsize)
|
| 94 |
+
last_b[0] = b
|
| 95 |
+
|
| 96 |
+
return inner
|
| 97 |
+
|
| 98 |
+
def download_and_extract_gz(self, file_url, cache_dir_root):
|
| 99 |
+
"""
|
| 100 |
+
Downloads and extracts a gz file into the given cache directory. Returns the full file path
|
| 101 |
+
of the extracted gz file.
|
| 102 |
+
Args:
|
| 103 |
+
file_url: url of the gz file to be downloaded and extracted.
|
| 104 |
+
cache_dir_root: Directory to extract file into.
|
| 105 |
+
"""
|
| 106 |
+
file_fname = Path(file_url).stem
|
| 107 |
+
file_complete_path = os.path.join(cache_dir_root, "downloads", file_fname)
|
| 108 |
+
|
| 109 |
+
if not os.path.exists(file_complete_path):
|
| 110 |
+
if not os.path.exists(file_complete_path + ".gz"):
|
| 111 |
+
with tqdm(
|
| 112 |
+
unit="B",
|
| 113 |
+
unit_scale=True,
|
| 114 |
+
unit_divisor=1024,
|
| 115 |
+
miniters=1,
|
| 116 |
+
desc=file_url.split("/")[-1],
|
| 117 |
+
) as t:
|
| 118 |
+
urllib.request.urlretrieve(
|
| 119 |
+
file_url, file_complete_path + ".gz", reporthook=self.hook(t)
|
| 120 |
+
)
|
| 121 |
+
with gzip.open(file_complete_path + ".gz", "rb") as file_in:
|
| 122 |
+
with open(file_complete_path, "wb") as file_out:
|
| 123 |
+
shutil.copyfileobj(file_in, file_out)
|
| 124 |
+
return file_complete_path
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class CagePredictionHandler(GenomicLRATaskHandler):
|
| 128 |
+
"""
|
| 129 |
+
Handler for the CAGE prediction task.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
NUM_TRAIN = 33891
|
| 133 |
+
NUM_TEST = 1922
|
| 134 |
+
NUM_VALID = 2195
|
| 135 |
+
DEFAULT_LENGTH = 114688 # 896 x 128bp
|
| 136 |
+
TARGET_SHAPE = (
|
| 137 |
+
896,
|
| 138 |
+
50,
|
| 139 |
+
) # 50 is a subset of CAGE tracks from the original enformer dataset
|
| 140 |
+
NPZ_SPLIT = 1000 # number of files per npz file.
|
| 141 |
+
NUM_BP_PER_BIN = 128 # number of base pairs per bin in labels
|
| 142 |
+
|
| 143 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 144 |
+
"""
|
| 145 |
+
Creates a new handler for the CAGE task.
|
| 146 |
+
Args:
|
| 147 |
+
sequence_length: allows for increasing sequence context. Sequence length must be a multiple of 128 to align with binned labels. Note: increasing
|
| 148 |
+
sequence length may decrease the number of usable samples.
|
| 149 |
+
"""
|
| 150 |
+
self.reference_genome = None
|
| 151 |
+
self.coordinate_csv_file = None
|
| 152 |
+
self.target_files_by_split = {}
|
| 153 |
+
|
| 154 |
+
assert (sequence_length // 128) % 2 == 0, (
|
| 155 |
+
f"Requested sequence length must be an even multuple of 128 to align with the binned labels."
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
self.sequence_length = sequence_length
|
| 159 |
+
|
| 160 |
+
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 161 |
+
|
| 162 |
+
self.TARGET_SHAPE = (self.sequence_length//128,50)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 166 |
+
"""
|
| 167 |
+
Returns the DatasetInfo for the CAGE dataset. Each example
|
| 168 |
+
includes a genomic sequence and a 2D array of labels
|
| 169 |
+
"""
|
| 170 |
+
features = datasets.Features(
|
| 171 |
+
{
|
| 172 |
+
# DNA sequence
|
| 173 |
+
"sequence": datasets.Value("string"),
|
| 174 |
+
# array of sequence length x num_labels
|
| 175 |
+
"labels": datasets.Array2D(shape=self.TARGET_SHAPE, dtype="float32"),
|
| 176 |
+
# chromosome number
|
| 177 |
+
"chromosome":datasets.Value(dtype="string")
|
| 178 |
+
}
|
| 179 |
+
)
|
| 180 |
+
return datasets.DatasetInfo(
|
| 181 |
+
# This is the description that will appear on the datasets page.
|
| 182 |
+
description=description,
|
| 183 |
+
# This defines the different columns of the dataset and their types
|
| 184 |
+
features=features,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 188 |
+
"""
|
| 189 |
+
Separates files by split and stores filenames in instance variables.
|
| 190 |
+
The CAGE dataset requires reference genome, coordinate
|
| 191 |
+
csv file,and npy files to be saved.
|
| 192 |
+
"""
|
| 193 |
+
|
| 194 |
+
# Manually download the reference genome since there are difficulties when
|
| 195 |
+
# streaming the dataset
|
| 196 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 197 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 198 |
+
)
|
| 199 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 200 |
+
|
| 201 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
| 202 |
+
"cage_prediction/sequences_coordinates.csv"
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
train_file_dict = {}
|
| 206 |
+
for train_key, train_file in self.generate_npz_filenames(
|
| 207 |
+
"train", self.NUM_TRAIN, folder="cage_prediction/targets_subset"
|
| 208 |
+
):
|
| 209 |
+
train_file_dict[train_key] = dl_manager.download(train_file)
|
| 210 |
+
|
| 211 |
+
test_file_dict = {}
|
| 212 |
+
for test_key, test_file in self.generate_npz_filenames(
|
| 213 |
+
"test", self.NUM_TEST, folder="cage_prediction/targets_subset"
|
| 214 |
+
):
|
| 215 |
+
test_file_dict[test_key] = dl_manager.download(test_file)
|
| 216 |
+
|
| 217 |
+
valid_file_dict = {}
|
| 218 |
+
for valid_key, valid_file in self.generate_npz_filenames(
|
| 219 |
+
"valid", self.NUM_VALID, folder="cage_prediction/targets_subset"
|
| 220 |
+
):
|
| 221 |
+
valid_file_dict[valid_key] = dl_manager.download(valid_file)
|
| 222 |
+
|
| 223 |
+
# convert file list to a dict keyed by target number
|
| 224 |
+
self.target_files_by_split["train"] = train_file_dict
|
| 225 |
+
self.target_files_by_split["test"] = test_file_dict
|
| 226 |
+
self.target_files_by_split["validation"] = valid_file_dict
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
return [
|
| 230 |
+
datasets.SplitGenerator(
|
| 231 |
+
name=datasets.Split.TRAIN,
|
| 232 |
+
gen_kwargs={"handler": self, "split": "train"},
|
| 233 |
+
),
|
| 234 |
+
datasets.SplitGenerator(
|
| 235 |
+
name=datasets.Split.VALIDATION,
|
| 236 |
+
gen_kwargs={"handler": self, "split": "validation"},
|
| 237 |
+
),
|
| 238 |
+
datasets.SplitGenerator(
|
| 239 |
+
name=datasets.Split.TEST,
|
| 240 |
+
gen_kwargs={"handler": self, "split": "test"}
|
| 241 |
+
),
|
| 242 |
+
]
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def generate_examples(self, split):
|
| 246 |
+
"""
|
| 247 |
+
A generator which produces examples for the given split, each with a sequence
|
| 248 |
+
and the corresponding labels. The sequences are padded to the correct
|
| 249 |
+
sequence length and standardized before returning.
|
| 250 |
+
"""
|
| 251 |
+
|
| 252 |
+
target_files = self.target_files_by_split[split]
|
| 253 |
+
sequence_length = self.sequence_length
|
| 254 |
+
|
| 255 |
+
key = 0
|
| 256 |
+
coordinates_dataframe = pd.read_csv(self.coordinate_csv_file)
|
| 257 |
+
filtered = coordinates_dataframe[coordinates_dataframe["split"] == split]
|
| 258 |
+
for sequential_idx, row in filtered.iterrows():
|
| 259 |
+
start, stop = int(row["start"]) - 1, int(
|
| 260 |
+
row["stop"]) - 1 # -1 since vcf coords are 1-based
|
| 261 |
+
|
| 262 |
+
chromosome = row['chrom']
|
| 263 |
+
|
| 264 |
+
padded_sequence = pad_sequence(
|
| 265 |
+
chromosome=self.reference_genome[chromosome],
|
| 266 |
+
start=start,
|
| 267 |
+
sequence_length=sequence_length,
|
| 268 |
+
end=stop,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# floor npy_idx to the nearest 1000
|
| 272 |
+
npz_file = np.load(
|
| 273 |
+
target_files[int((row["npy_idx"] // self.NPZ_SPLIT) * self.NPZ_SPLIT)]
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
if (
|
| 277 |
+
split == "validation"
|
| 278 |
+
): # npy files are keyed by ["train", "test", "valid"]
|
| 279 |
+
split = "valid"
|
| 280 |
+
targets = npz_file[f"target-{split}-{row['npy_idx']}.npy"][0] # select 0 since there is extra dimension
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# subset the targets if sequence length is smaller than 114688 (
|
| 284 |
+
# DEFAULT_LENGTH)
|
| 285 |
+
if self.sequence_length < self.DEFAULT_LENGTH:
|
| 286 |
+
idx_diff = (self.DEFAULT_LENGTH - self.sequence_length) // 2 // 128
|
| 287 |
+
targets = targets[idx_diff:-idx_diff]
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
if padded_sequence:
|
| 291 |
+
yield key, {
|
| 292 |
+
"labels": targets,
|
| 293 |
+
"sequence": standardize_sequence(padded_sequence),
|
| 294 |
+
"chromosome": re.sub("chr","",chromosome)
|
| 295 |
+
}
|
| 296 |
+
key += 1
|
| 297 |
+
|
| 298 |
+
@staticmethod
|
| 299 |
+
def generate_npz_filenames(split, total, folder, npz_size=NPZ_SPLIT):
|
| 300 |
+
"""
|
| 301 |
+
Generates a list of filenames for the npz files stored in the dataset.
|
| 302 |
+
Yields a tuple of floored multiple of 1000, filename
|
| 303 |
+
Args:
|
| 304 |
+
split: split to generate filenames for. Must be in ['train', 'test', 'valid']
|
| 305 |
+
due to the naming of the files.
|
| 306 |
+
total: total number of npy targets for given split
|
| 307 |
+
folder: folder where data is stored.
|
| 308 |
+
npz_size: number of npy files per npz. Defaults to 1000 because
|
| 309 |
+
this is the number currently used in the dataset.
|
| 310 |
+
"""
|
| 311 |
+
|
| 312 |
+
for i in range(total // npz_size):
|
| 313 |
+
yield i * npz_size, f"{folder}/targets-{split}-{i * npz_size}-{i * npz_size + (npz_size - 1)}.npz"
|
| 314 |
+
if total % npz_size != 0:
|
| 315 |
+
yield (
|
| 316 |
+
npz_size * (total // npz_size),
|
| 317 |
+
f"{folder}/targets-{split}-"
|
| 318 |
+
f"{npz_size * (total // npz_size)}-"
|
| 319 |
+
f"{npz_size * (total // npz_size) + (total % npz_size - 1)}.npz",
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
class BulkRnaExpressionHandler(GenomicLRATaskHandler):
|
| 324 |
+
"""
|
| 325 |
+
Handler for the Bulk RNA Expression task.
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
DEFAULT_LENGTH = 114688
|
| 329 |
+
|
| 330 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 331 |
+
"""
|
| 332 |
+
Creates a new handler for the Bulk RNA Expression Prediction Task.
|
| 333 |
+
Args:
|
| 334 |
+
sequence_length: Length of the sequence around the TSS_CAGE start site
|
| 335 |
+
|
| 336 |
+
"""
|
| 337 |
+
self.reference_genome = None
|
| 338 |
+
self.coordinate_csv_file = None
|
| 339 |
+
self.labels_csv_file = None
|
| 340 |
+
self.sequence_length = sequence_length
|
| 341 |
+
|
| 342 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 343 |
+
"""
|
| 344 |
+
Returns the DatasetInfo for the Bulk RNA Expression dataset. Each example
|
| 345 |
+
includes a genomic sequence and a list of label values.
|
| 346 |
+
"""
|
| 347 |
+
features = datasets.Features(
|
| 348 |
+
{
|
| 349 |
+
# DNA sequence
|
| 350 |
+
"sequence": datasets.Value("string"),
|
| 351 |
+
# list of expression values in each tissue
|
| 352 |
+
"labels": datasets.Sequence(datasets.Value("float32")),
|
| 353 |
+
# chromosome number
|
| 354 |
+
"chromosome":datasets.Value(dtype="string")
|
| 355 |
+
}
|
| 356 |
+
)
|
| 357 |
+
return datasets.DatasetInfo(
|
| 358 |
+
# This is the description that will appear on the datasets page.
|
| 359 |
+
description=description,
|
| 360 |
+
# This defines the different columns of the dataset and their types
|
| 361 |
+
features=features,
|
| 362 |
+
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 366 |
+
"""
|
| 367 |
+
Separates files by split and stores filenames in instance variables.
|
| 368 |
+
The Bulk RNA Expression dataset requires the reference hg19 genome, coordinate
|
| 369 |
+
csv file,and label csv file to be saved.
|
| 370 |
+
"""
|
| 371 |
+
# Manually download the reference genome since there are difficulties when streaming
|
| 372 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 373 |
+
H19_REFERENCE_GENOME_URL, cache_dir_root
|
| 374 |
+
)
|
| 375 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 376 |
+
|
| 377 |
+
self.coordinate_csv_file = dl_manager.download_and_extract(
|
| 378 |
+
"bulk_rna_expression/gene_coordinates.csv"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
self.labels_csv_file = dl_manager.download_and_extract(
|
| 382 |
+
"bulk_rna_expression/rna_expression_values.csv"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
| 386 |
+
|
| 387 |
+
def generate_examples(self, split):
|
| 388 |
+
"""
|
| 389 |
+
A generator which produces examples for the given split, each with a sequence
|
| 390 |
+
and the corresponding labels. The sequences are padded to the correct sequence
|
| 391 |
+
length and standardized before returning.
|
| 392 |
+
"""
|
| 393 |
+
coordinates_df = pd.read_csv(self.coordinate_csv_file)
|
| 394 |
+
labels_df = pd.read_csv(self.labels_csv_file)
|
| 395 |
+
|
| 396 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
| 397 |
+
|
| 398 |
+
key = 0
|
| 399 |
+
for idx, coordinates_row in coordinates_split_df.iterrows():
|
| 400 |
+
start = coordinates_row[
|
| 401 |
+
"CAGE_representative_TSS"] - 1 # -1 since vcf coords are 1-based
|
| 402 |
+
|
| 403 |
+
chromosome = coordinates_row["chrom"]
|
| 404 |
+
labels_row = labels_df.loc[idx].values
|
| 405 |
+
padded_sequence = pad_sequence(
|
| 406 |
+
chromosome=self.reference_genome[chromosome],
|
| 407 |
+
start=start,
|
| 408 |
+
sequence_length=self.sequence_length,
|
| 409 |
+
negative_strand=coordinates_row["strand"] == "-",
|
| 410 |
+
)
|
| 411 |
+
if padded_sequence:
|
| 412 |
+
yield key, {
|
| 413 |
+
"labels": labels_row,
|
| 414 |
+
"sequence": standardize_sequence(padded_sequence),
|
| 415 |
+
"chromosome":re.sub("chr","",chromosome)
|
| 416 |
+
}
|
| 417 |
+
key += 1
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
class VariantEffectPredictionHandler(GenomicLRATaskHandler):
|
| 421 |
+
"""
|
| 422 |
+
Handler for the Variant Effect Prediction task.
|
| 423 |
+
"""
|
| 424 |
+
|
| 425 |
+
DEFAULT_LENGTH = 114688
|
| 426 |
+
|
| 427 |
+
def __init__(self, sequence_length=DEFAULT_LENGTH, **kwargs):
|
| 428 |
+
"""
|
| 429 |
+
Creates a new handler for the Variant Effect Prediction Task.
|
| 430 |
+
Args:
|
| 431 |
+
sequence_length: Length of the sequence to pad around the SNP position
|
| 432 |
+
|
| 433 |
+
"""
|
| 434 |
+
self.reference_genome = None
|
| 435 |
+
self.sequence_length = sequence_length
|
| 436 |
+
|
| 437 |
+
def get_info(self, description: str) -> DatasetInfo:
|
| 438 |
+
"""
|
| 439 |
+
Returns the DatasetInfo for the Variant Effect Prediction dataset. Each example
|
| 440 |
+
includes a genomic sequence with the reference allele as well as the genomic sequence with the alternative allele,
|
| 441 |
+
and a binary label.
|
| 442 |
+
"""
|
| 443 |
+
features = datasets.Features(
|
| 444 |
+
{
|
| 445 |
+
# DNA sequence
|
| 446 |
+
"ref_forward_sequence": datasets.Value("string"),
|
| 447 |
+
"alt_forward_sequence": datasets.Value("string"),
|
| 448 |
+
# binary label
|
| 449 |
+
"label": datasets.Value(dtype="int8"),
|
| 450 |
+
# tissue type
|
| 451 |
+
"tissue": datasets.Value(dtype="string"),
|
| 452 |
+
# chromosome number
|
| 453 |
+
"chromosome": datasets.Value(dtype="string"),
|
| 454 |
+
# distance to nearest tss
|
| 455 |
+
"distance_to_nearest_tss":datasets.Value(dtype="int32")
|
| 456 |
+
}
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
return datasets.DatasetInfo(
|
| 460 |
+
# This is the description that will appear on the datasets page.
|
| 461 |
+
description=description,
|
| 462 |
+
# This defines the different columns of the dataset and their types
|
| 463 |
+
features=features,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
def split_generators(self, dl_manager, cache_dir_root):
|
| 467 |
+
"""
|
| 468 |
+
Separates files by split and stores filenames in instance variables.
|
| 469 |
+
The variant effect prediction dataset requires the reference hg38 genome and
|
| 470 |
+
coordinates_labels_csv_file to be saved.
|
| 471 |
+
"""
|
| 472 |
+
|
| 473 |
+
# Manually download the reference genome since there are difficulties
|
| 474 |
+
# when streaming
|
| 475 |
+
reference_genome_file = self.download_and_extract_gz(
|
| 476 |
+
H38_REFERENCE_GENOME_URL, cache_dir_root
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
self.reference_genome = Fasta(reference_genome_file, one_based_attributes=False)
|
| 480 |
+
self.coordinates_labels_csv_file = dl_manager.download_and_extract(
|
| 481 |
+
f"variant_effect_prediction/All_Tissues.csv"
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
return super().split_generators(dl_manager, cache_dir_root)
|
| 485 |
+
|
| 486 |
+
def generate_examples(self, split):
|
| 487 |
+
"""
|
| 488 |
+
A generator which produces examples each with ref/alt allele
|
| 489 |
+
and corresponding binary label. The sequences are extended to
|
| 490 |
+
the desired sequence length and standardized before returning.
|
| 491 |
+
"""
|
| 492 |
+
|
| 493 |
+
coordinates_df = pd.read_csv(self.coordinates_labels_csv_file)
|
| 494 |
+
|
| 495 |
+
coordinates_split_df = coordinates_df[coordinates_df["split"] == split]
|
| 496 |
+
|
| 497 |
+
key = 0
|
| 498 |
+
for idx, row in coordinates_split_df.iterrows():
|
| 499 |
+
start = row["POS"] - 1 # sub 1 to create idx since vcf coords are 1-based
|
| 500 |
+
alt_allele = row["ALT"]
|
| 501 |
+
label = row["label"]
|
| 502 |
+
tissue = row['tissue']
|
| 503 |
+
chromosome = row["CHROM"]
|
| 504 |
+
distance = int(row["distance_to_nearest_TSS"])
|
| 505 |
+
|
| 506 |
+
# get reference forward sequence
|
| 507 |
+
ref_forward = pad_sequence(
|
| 508 |
+
chromosome=self.reference_genome[chromosome],
|
| 509 |
+
start=start,
|
| 510 |
+
sequence_length=self.sequence_length,
|
| 511 |
+
negative_strand=False,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
# only if a valid sequence returned
|
| 515 |
+
if ref_forward:
|
| 516 |
+
# Mutate sequence with the alt allele at the SNP position, which is always
|
| 517 |
+
# centered in the string returned from pad_sequence
|
| 518 |
+
alt_forward = list(ref_forward)
|
| 519 |
+
alt_forward[self.sequence_length // 2] = alt_allele
|
| 520 |
+
alt_forward = "".join(alt_forward)
|
| 521 |
+
|
| 522 |
+
yield key, {
|
| 523 |
+
"label": label,
|
| 524 |
+
"tissue": tissue,
|
| 525 |
+
"chromosome": re.sub("chr", "", chromosome),
|
| 526 |
+
"ref_forward_sequence": standardize_sequence(ref_forward),
|
| 527 |
+
"alt_forward_sequence": standardize_sequence(alt_forward),
|
| 528 |
+
"distance_to_nearest_tss": distance
|
| 529 |
+
}
|
| 530 |
+
key += 1
|