--- dataset_name: strava_master_dataset pretty_name: Strava Master Dataset license: cc-by-nc-4.0 task_categories: - time-series-forecasting # ← ここを修正 tags: - running - cycling - wearable language: - en --- # Strava Master Dataset ― Benj-samurai > **Personal multi-sport training log** exported from Strava (JP CSV) and processed into a clean, analysis-ready Parquet table + weekly summaries. > Covers **〔開始日 – 終了日〕**, total **〔活動件数〕 activities** across **〔種目数〕 sports**. --- ## Files | File | Rows | Description | |------|-----:|-------------| | `my_strava_dataset/strava_master_enhanced.parquet` | 〔n〕 | Master table — 1 row = 1 activity | | `my_strava_dataset/weekly_sport.parquet` | 〔m〕 | Weekly totals by *year–week × sport* | | `my_strava_dataset/weekly_category.parquet` | 〔k〕 | Weekly totals by intensity zone | *(Parquet → compact, schema-aware, loadable via `datasets.load_dataset`)* --- ## Column definitions (master) | Column | `dtype` | Description | |--------|---------|-------------| | `activity_id` | `int64` | Strava Activity ID | | `name` | `string` | Activity title as saved on Strava | | `sport` | `category` | Sport type (`Run`, `Ride`, `Swim`, `Walk`, …) | | `date` | `datetime64[ns]` | Local activity start time | | `distance_km` | `float32` | Distance in **kilometres** (raw m → km) | | `elapsed_hr` | `float32` | Elapsed time incl. pauses **hours** (raw sec → h) | | `moving_hr` | `float32` | Moving time (in-motion) **hours** | | `elevation_gain_m` | `float32` | Total positive elevation gain (m) | | `elevation_loss_m` | `float32` | Total negative elevation (m) | | `average_speed_kph` | `float32` | Moving speed (km h⁻¹) | | `max_speed_kph` | `float32` | Max speed (km h⁻¹) | | `average_hr` | `float32` | Avg heart-rate (bpm) – *NaN if no sensor* | | `max_hr` | `int16` | Max heart-rate (bpm) | | `average_cadence` | `float32` | Avg cadence (rpm) | | `max_cadence` | `int16` | Max cadence (rpm) | | `average_power` | `float32` | Avg power (W); bike only | | `max_power` | `int16` | Peak power (W) | | `calories_kcal` | `float32` | Calories reported by Strava | | `training_category` | `category` | HR zone label `Z1-2 / Z3 / Z4 / Z5 / NoHR` | | `intensity_level` | `float32` | Avg HR ÷ LTHR (165 bpm) | | `trimp` | `float32` | Banister TRIMP (`moving_hr × intensity_level × 50`) | | `commute` | `boolean` | Marked as commute on Strava | | `filename` | `string` | Original FIT/GPX filename (meta only) | | `gear` | `string` | Bike / shoes used (if set) | | `weather` | `string` | Weather summary (if available) | | `temperature_c` | `float32` | Avg temp (°C) | | `flagged` | `boolean` | Strava flagged activity | | `year` | `int16` | Calendar year (`date`). fast grouping | | `month` | `int16` | Calendar month (1–12) | | `week` | `int16` | ISO week number (1–53) | | `year_month` | `string` | `"YYYY-MM"` label for plotting | | `week_start` | `datetime64[ns]` | Monday of ISO week (analysis helper) | | `sport_weekly_id` | `string` | Composite key `year_week-sport` | | `distance_ratio` | `float32` | Share of weekly distance (per sport) | | `pace_min_per_km` | `float32` | Pace (min km⁻¹); NaN for non-run | | `grade_adjusted_pace` | `float32` | GAP (min km⁻¹); run only | | `dirt_distance_km` | `float32` | Unpaved distance (km) | | `total_cycles` | `int32` | Swim strokes / pedal revs where available | | `route_hash` | `string` | MD5 of polyline (GPS privacy) | | `gpx_path` | `string \| None` | Optional GeoJSON path file | > *All numeric distance/time columns are converted to km / hours and stored in > low-memory float32/int16 where possible. > Empty sensor data are kept as **`NaN`** so they don’t skew means.* --- ## Processing pipeline 1. **Export**: Strava JP CSV (`activities.csv`) 2. **Header translation** JP→EN (`translate_headers.py`) 3. Unit conversion (m→km, s→h) & dtype down-cast (`clean_master.ipynb`) 4. **Intensity & TRIMP**: LTHR = 165 bpm, Banister formula 5. Weekly aggregations (`weekly_summary.ipynb`) 6. Saved as Parquet, tracked via **Git LFS** (compact & diff-friendly) Code & notebooks live in the companion GitHub repo: --- ## Usage ✨ ```python from datasets import load_dataset ds = load_dataset( "Benj-samurai/strava_dataset", data_files="my_strava_dataset/strava_master_enhanced.parquet", streaming=False, # True = stream without download ) df = ds["train"].to_pandas() # quick EDA weekly_km = ( df.assign(year_week=df["date"].dt.to_period("W")) .groupby(["year_week", "sport"])["distance_km"].sum() ) print(weekly_km.tail()) ``` ## Privacy & Personal-use License - **Raw FIT/GPX files are _not_ included.** - **Activity start coordinates are jittered ≥ 200 m** to obscure the true home location. - Released under **CC BY-NC 4.0** – non-commercial use, attribution required. If you wish to use the data commercially, please contact the author first. --- ## Citation ```bibtex @misc{asai2025strava, author = {Asai, Benj-samurai}, title = {Strava Master Dataset}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/Benj-samurai/strava_dataset}}, note = {Version {{\today}}} } ``` ## Changelog | Date | Version | Notes | |------------|---------|--------------------------| | 2025-05-06 | v1.0 | Initial public release | --- ### 使い方 1. HF Hub ページの **Dataset card** タブ → **Edit** を開く 2. 上の Markdown を貼り付ける 3. 〔 〕部分を実際の値に置換して **Commit** *行数* は手元で `len(df)`、週レコードは `len(weekly_sport)` などで確認できます。 これで “列定義・処理手順・使用例・ライセンス” を網羅したリッチな Dataset Card になります。 追記やレイアウト調整はお好みでどうぞ!