File size: 11,444 Bytes
216ed4b 2878a71 216ed4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""
EIT Dataset Loader - Direct Python Class (No HuggingFace script loading)
This loader provides direct access to the EIT dataset stored in HDF5 format.
Can be used standalone or wrapped for HuggingFace datasets compatibility.
"""
import h5py
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple, Optional
import torch
from torch.utils.data import Dataset
class EITDataset(Dataset):
"""
PyTorch Dataset for EIT (Electrical Impedance Tomography) data.
Args:
data_dir: Base directory containing the dataset
subset: Which dataset to load ("CirclesOnly" or "FourObjects")
split: Which split to load ("train", "val", or "test")
image_resolution: Image resolution ("32_log", "64_log", "128_log", or "256")
load_to_memory: If True, load all data to RAM (faster but memory intensive)
"""
def __init__(
self,
data_dir: str,
subset: str = "CirclesOnly",
split: str = "train",
image_resolution: str = "128_log",
load_to_memory: bool = False
):
self.data_dir = Path(data_dir)
self.subset = subset
self.split = split
self.image_resolution = image_resolution
self.load_to_memory = load_to_memory
# Paths
self.subset_path = self.data_dir / subset
self.h5_path = self.subset_path / "dataset.h5"
# Map split name to file name
split_map = {"train": "train.txt", "val": "val.txt", "test": "test.txt"}
self.split_file = self.subset_path / "parameters" / split_map[split]
# Load split indices
self._load_split_indices()
# Load data to memory if requested
if self.load_to_memory:
self._load_to_memory()
else:
self.cached_data = None
def _load_split_indices(self):
"""Load the indices for this split."""
with open(self.split_file, 'r') as f:
self.indices = [int(line.strip()) for line in f if line.strip()]
def _load_to_memory(self):
"""Load all data for this split into memory."""
print(f"Loading {len(self.indices)} samples to memory...")
self.cached_data = []
with h5py.File(self.h5_path, "r") as h5_file:
voltage_data = h5_file["volt"]["16"]
image_data = h5_file["image"][self.image_resolution]
# Determine graph key
graph_key = self.image_resolution if self.image_resolution != "256" else "128_log"
has_graph = graph_key in h5_file["graph"]
for sample_idx in self.indices:
voltage = voltage_data[:, sample_idx].astype(np.float32)
image = image_data[:, :, sample_idx].astype(np.float32)
sample = {
'voltage_measurements': voltage,
'conductivity_map': image,
'sample_id': sample_idx
}
if has_graph:
graph = h5_file["graph"][graph_key][:, sample_idx].astype(np.float32)
sample['graph_representation'] = graph
self.cached_data.append(sample)
print("Data loaded to memory!")
def __len__(self) -> int:
return len(self.indices)
def __getitem__(self, idx: int) -> Dict[str, np.ndarray]:
"""Get a single sample."""
if self.cached_data is not None:
# Return from cached data
return self.cached_data[idx]
# Read from HDF5 file on-the-fly
sample_idx = self.indices[idx]
with h5py.File(self.h5_path, "r") as h5_file:
voltage = h5_file["volt"]["16"][:, sample_idx].astype(np.float32)
image = h5_file["image"][self.image_resolution][:, :, sample_idx].astype(np.float32)
sample = {
'voltage_measurements': voltage,
'conductivity_map': image,
'sample_id': sample_idx
}
# Add graph representation if available
graph_key = self.image_resolution if self.image_resolution != "256" else "128_log"
if graph_key in h5_file["graph"]:
graph = h5_file["graph"][graph_key][:, sample_idx].astype(np.float32)
sample['graph_representation'] = graph
return sample
def get_image_shape(self) -> Tuple[int, int]:
"""Get the shape of conductivity maps."""
resolution_map = {
"32_log": (32, 32),
"64_log": (64, 64),
"128_log": (128, 128),
"256": (256, 256)
}
return resolution_map.get(self.image_resolution, (128, 128))
def get_statistics(self) -> Dict:
"""Calculate dataset statistics."""
print("Calculating statistics...")
voltage_sum = np.zeros(256, dtype=np.float64)
voltage_sq_sum = np.zeros(256, dtype=np.float64)
image_sum = 0.0
image_sq_sum = 0.0
n_samples = len(self)
with h5py.File(self.h5_path, "r") as h5_file:
voltage_data = h5_file["volt"]["16"]
image_data = h5_file["image"][self.image_resolution]
for sample_idx in self.indices:
voltage = voltage_data[:, sample_idx]
image = image_data[:, :, sample_idx]
voltage_sum += voltage
voltage_sq_sum += voltage ** 2
image_sum += np.sum(image)
image_sq_sum += np.sum(image ** 2)
n_pixels = n_samples * self.get_image_shape()[0] * self.get_image_shape()[1]
stats = {
'voltage_mean': voltage_sum / n_samples,
'voltage_std': np.sqrt(voltage_sq_sum / n_samples - (voltage_sum / n_samples) ** 2),
'image_mean': image_sum / n_pixels,
'image_std': np.sqrt(image_sq_sum / n_pixels - (image_sum / n_pixels) ** 2),
'n_samples': n_samples
}
return stats
class EITDataModule:
"""
Convenience class to manage all splits of the EIT dataset.
Args:
data_dir: Base directory containing the dataset
subset: Which dataset to load ("CirclesOnly" or "FourObjects")
image_resolution: Image resolution ("32_log", "64_log", "128_log", or "256")
batch_size: Batch size for DataLoaders
num_workers: Number of workers for DataLoaders
load_to_memory: If True, load all data to RAM
"""
def __init__(
self,
data_dir: str,
subset: str = "CirclesOnly",
image_resolution: str = "128_log",
batch_size: int = 32,
num_workers: int = 4,
load_to_memory: bool = False
):
self.data_dir = data_dir
self.subset = subset
self.image_resolution = image_resolution
self.batch_size = batch_size
self.num_workers = num_workers
self.load_to_memory = load_to_memory
# Create datasets
self.train_dataset = EITDataset(
data_dir, subset, "train", image_resolution, load_to_memory
)
self.val_dataset = EITDataset(
data_dir, subset, "val", image_resolution, load_to_memory
)
self.test_dataset = EITDataset(
data_dir, subset, "test", image_resolution, load_to_memory
)
def train_dataloader(self, **kwargs):
"""Get training DataLoader."""
from torch.utils.data import DataLoader
return DataLoader(
self.train_dataset,
batch_size=kwargs.get('batch_size', self.batch_size),
shuffle=True,
num_workers=kwargs.get('num_workers', self.num_workers),
pin_memory=True
)
def val_dataloader(self, **kwargs):
"""Get validation DataLoader."""
from torch.utils.data import DataLoader
return DataLoader(
self.val_dataset,
batch_size=kwargs.get('batch_size', self.batch_size),
shuffle=False,
num_workers=kwargs.get('num_workers', self.num_workers),
pin_memory=True
)
def test_dataloader(self, **kwargs):
"""Get test DataLoader."""
from torch.utils.data import DataLoader
return DataLoader(
self.test_dataset,
batch_size=kwargs.get('batch_size', self.batch_size),
shuffle=False,
num_workers=kwargs.get('num_workers', self.num_workers),
pin_memory=True
)
def get_statistics(self):
"""Get statistics for all splits."""
return {
'train': self.train_dataset.get_statistics(),
'val': self.val_dataset.get_statistics(),
'test': self.test_dataset.get_statistics()
}
# Example usage
if __name__ == "__main__":
print("="*60)
print("EIT Dataset Loader - Example Usage")
print("="*60)
# Create dataset
data_dir = "https://huggingface.co/datasets/AymanAmeen/SimEIT-dataset"
print("\n1. Creating datasets...")
train_dataset = EITDataset(
data_dir=data_dir,
subset="CirclesOnly",
split="train",
image_resolution="128_log",
load_to_memory=False
)
print(f" Train dataset size: {len(train_dataset)}")
print(f" Image shape: {train_dataset.get_image_shape()}")
# Get a sample
print("\n2. Loading a sample...")
sample = train_dataset[0]
print(f" Keys: {list(sample.keys())}")
print(f" Voltage measurements shape: {sample['voltage_measurements'].shape}")
print(f" Conductivity map shape: {sample['conductivity_map'].shape}")
if 'graph_representation' in sample:
print(f" Graph representation shape: {sample['graph_representation'].shape}")
print(f" Sample ID: {sample['sample_id']}")
# Create DataModule
print("\n3. Creating EITDataModule...")
data_module = EITDataModule(
data_dir=data_dir,
subset="CirclesOnly",
image_resolution="128_log",
batch_size=4,
num_workers=0 # Set to 0 for testing, increase for training
)
print(f" Train samples: {len(data_module.train_dataset)}")
print(f" Val samples: {len(data_module.val_dataset)}")
print(f" Test samples: {len(data_module.test_dataset)}")
# Create DataLoader
print("\n4. Creating DataLoader and getting a batch...")
train_loader = data_module.train_dataloader()
batch = next(iter(train_loader))
print(f" Batch voltage shape: {batch['voltage_measurements'].shape}")
print(f" Batch image shape: {batch['conductivity_map'].shape}")
print(f" Batch IDs: {batch['sample_id'].tolist()}")
# Test different configurations
print("\n5. Testing different resolutions...")
for resolution in ["32_log", "64_log", "128_log", "256"]:
try:
ds = EITDataset(data_dir, "CirclesOnly", "train", resolution)
print(f" {resolution}: {len(ds)} samples, shape: {ds.get_image_shape()}")
except Exception as e:
print(f" {resolution}: Error - {e}")
print("\n" + "="*60)
print("All tests completed successfully!")
print("="*60)
|