Update README.md
Browse files
README.md
CHANGED
|
@@ -2,8 +2,10 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
|
| 5 |
-
###
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
<h1 align="center">
|
|
@@ -16,6 +18,7 @@ license: apache-2.0
|
|
| 16 |
</div>
|
| 17 |
|
| 18 |
|
|
|
|
| 19 |
## 📘 Introduction
|
| 20 |
|
| 21 |
**MoBE (Mixture-of-Basis-Experts)** is a novel model compression technique designed for MoE LLMs developed by the **AGI Center, Ant Group Research**. It achieves efficient parameter reduction by factorizing each expert's weight matrix as:
|
|
@@ -35,174 +38,6 @@ MoBE significantly outperforms prior compression methods with minimal accuracy d
|
|
| 35 |
- Incurs only **1%–2% absolute accuracy drop** (≈2% relative)
|
| 36 |
- Demonstrated on **Qwen3-235B**, **DeepSeek-V3 (671B)**, and **Kimi-K2-Instruct (1T)**
|
| 37 |
|
| 38 |
-
|
| 39 |
-
## 📊 Evaluation Results
|
| 40 |
-
|
| 41 |
-

|
| 42 |
-
---
|
| 43 |
-
|
| 44 |
-
## 🚀 Quickstart
|
| 45 |
-
|
| 46 |
-
### 🔧 Installation
|
| 47 |
-
```
|
| 48 |
-
pip install -r requirements.txt
|
| 49 |
-
```
|
| 50 |
-
|
| 51 |
-
---
|
| 52 |
-
|
| 53 |
-
### 🛠️ Step-by-Step Instructions
|
| 54 |
-
Converting an MoE model to MoBE involves two stages:
|
| 55 |
-
1. **Train** the MoBE decomposition.
|
| 56 |
-
2. **Generate** either a native MoBE model or reconstruct a standard MoE for compatibility.
|
| 57 |
-
---
|
| 58 |
-
#### 1. Train MoBE Matrices
|
| 59 |
-
```
|
| 60 |
-
python train.py --index_path /root/DeepSeek-V3-0324/model.safetensors.index.json \
|
| 61 |
-
--base_dir /root/DeepSeek-V3-0324 \
|
| 62 |
-
--save_path /root/MoBE/DeepSeek-V3-0324 \
|
| 63 |
-
--num_hidden_layers 61 \
|
| 64 |
-
--num_matrices 256 \
|
| 65 |
-
--rows_per_matrix 2048 \
|
| 66 |
-
--cols 7168 \
|
| 67 |
-
--num_epochs 10000 \
|
| 68 |
-
--batch_size 32 \
|
| 69 |
-
--num_batches 8 \
|
| 70 |
-
--learning_rate 0.07 \
|
| 71 |
-
--num_B 64 \
|
| 72 |
-
--truncation 2048 \
|
| 73 |
-
--start_layer 3 \
|
| 74 |
-
--end_layer 61 \
|
| 75 |
-
--matrix_type "gate_proj" \
|
| 76 |
-
--activation 'tanh'
|
| 77 |
-
```
|
| 78 |
-
| Argument | Description |
|
| 79 |
-
|--------|-------------|
|
| 80 |
-
| `index_path` | Path to `.safetensors.index.json` mapping tensor names to shards |
|
| 81 |
-
| `base_dir` | Root directory containing model shards |
|
| 82 |
-
| `save_path` | Output directory for trained MoBE matrices |
|
| 83 |
-
| `num_hidden_layers` | Total number of transformer layers |
|
| 84 |
-
| `num_matrices` | Number of experts in the original MoE model |
|
| 85 |
-
| `rows_per_matrix` | Row dimension of the weight matrices (e.g., `up_proj`, `gate_proj`) |
|
| 86 |
-
| `cols` | Column dimension of the weight matrices |
|
| 87 |
-
| `num_epochs` | Number of optimization steps for reconstruction |
|
| 88 |
-
| `batch_size` | Batch size (number of experts sampled per step) |
|
| 89 |
-
| `num_batches` | Number of batches processed per epoch. Total experts in one layer = `batch_size × num_batches` |
|
| 90 |
-
| `learning_rate` | Learning rate for the optimizer (e.g., Adam) |
|
| 91 |
-
| `num_B` | Number of basis matrices used in the MoBE |
|
| 92 |
-
| `truncation` | Maximum number of rows retained in each basis matrix |
|
| 93 |
-
| `start_layer` | First transformer layer (inclusive) to apply MoBE compression |
|
| 94 |
-
| `end_layer` | Last transformer layer (exclusive) to apply compression |
|
| 95 |
-
| `matrix_type` | Type of weight matrix to compress (e.g., `"gate_proj"`, `"up_proj"`) |
|
| 96 |
-
| `activation` | Activation function used in MoBE (e.g., `"silu"`, `"tanh"`) |
|
| 97 |
-
|
| 98 |
-
> 💡 **Tip**: Run this step separately for each `matrix_type` (e.g., `gate_proj`, `up_proj`) within the same layer range.
|
| 99 |
-
|
| 100 |
-
For Kimi-K2-Instruct, we recommend dividing the experts within each transformer layer into two groups and applying MoBE compression separately to each group.
|
| 101 |
-
```
|
| 102 |
-
python train_group.py --index_path /root/Kimi-K2-Instruct/model.safetensors.index.json \
|
| 103 |
-
--base_dir /root/Kimi-K2-Instruct \
|
| 104 |
-
--save_path /root/MoBE/Kimi-K2-Instruct \
|
| 105 |
-
--num_hidden_layers 61 \
|
| 106 |
-
--num_matrices 384 \
|
| 107 |
-
--rows_per_matrix 2048 \
|
| 108 |
-
--cols 7168 \
|
| 109 |
-
--num_epochs 15000 \
|
| 110 |
-
--batch_size 32 \
|
| 111 |
-
--num_batches 12 \
|
| 112 |
-
--learning_rate 0.07 \
|
| 113 |
-
--num_B 128 \
|
| 114 |
-
--truncation 2048 \
|
| 115 |
-
--start_layer 1 \
|
| 116 |
-
--end_layer 61 \
|
| 117 |
-
--matrix_type "gate_proj" \
|
| 118 |
-
--num_groups 2 \
|
| 119 |
-
--activation 'silu'
|
| 120 |
-
```
|
| 121 |
-
| Argument | Description |
|
| 122 |
-
|--------|-------------|
|
| 123 |
-
| `index_path` | Path to `.safetensors.index.json` mapping tensor names to shards |
|
| 124 |
-
| `base_dir` | Root directory containing model shards |
|
| 125 |
-
| `save_path` | Output directory for trained MoBE matrices |
|
| 126 |
-
| `num_hidden_layers` | Total number of transformer layers |
|
| 127 |
-
| `num_matrices` | Number of experts in the original MoE model |
|
| 128 |
-
| `rows_per_matrix` | Row dimension of the weight matrices (e.g., `up_proj`, `gate_proj`) |
|
| 129 |
-
| `cols` | Column dimension of the weight matrices |
|
| 130 |
-
| `num_epochs` | Number of optimization steps for reconstruction |
|
| 131 |
-
| `batch_size` | Batch size (number of experts sampled per step) |
|
| 132 |
-
| `num_batches` | Number of batches processed per epoch. Total experts in one layer = `batch_size × num_batches` |
|
| 133 |
-
| `learning_rate` | Learning rate for the optimizer (e.g., Adam) |
|
| 134 |
-
| `num_B` | Number of basis matrices used in the MoBE |
|
| 135 |
-
| `truncation` | Maximum number of rows retained in each basis matrix |
|
| 136 |
-
| `start_layer` | First transformer layer (inclusive) to apply MoBE compression |
|
| 137 |
-
| `end_layer` | Last transformer layer (exclusive) to apply compression |
|
| 138 |
-
| `matrix_type` | Type of weight matrix to compress (e.g., `"gate_proj"`, `"up_proj"`) |
|
| 139 |
-
| `activation` | Activation function used in MoBE (e.g., `"silu"`, `"tanh"`) |
|
| 140 |
-
| `num_groups` | Number of expert groups to split the original MoE experts into before applying MoBE compression separately to each group |
|
| 141 |
-
|
| 142 |
-
---
|
| 143 |
-
|
| 144 |
-
#### 2. Generate MoBE or Reconstructed MoE Model
|
| 145 |
-
|
| 146 |
-
After training, you can:
|
| 147 |
-
- Deploy the **native MoBE model** (high compression)
|
| 148 |
-
- Reconstruct a **standard MoE model** for compatibility with `vLLM` or `SGLang`
|
| 149 |
-
|
| 150 |
-
##### 🔹 Option A: Save Native MoBE Model
|
| 151 |
-
```
|
| 152 |
-
python get_mobe.py --base_model /root/DeepSeek-V3-0324 \
|
| 153 |
-
--mobe_dir /root/MoBE/DeepSeek-V3-0324 \
|
| 154 |
-
--save_dir /root/DeepSeek-V3-0324-MoBE \
|
| 155 |
-
--num_B 64 \
|
| 156 |
-
--num_experts 256 \
|
| 157 |
-
--start_layer 3 \
|
| 158 |
-
--end_layer 61 \
|
| 159 |
-
--dtype bfloat16 \
|
| 160 |
-
--activation 'tanh'
|
| 161 |
-
```
|
| 162 |
-
###### Arguments
|
| 163 |
-
|
| 164 |
-
| Argument | Description |
|
| 165 |
-
|--------|-------------|
|
| 166 |
-
| `base_model` | Path to the original model directory |
|
| 167 |
-
| `mobe_dir` | Directory containing trained MoBE matrices (`A`, `B^i`, `α_i`) |
|
| 168 |
-
| `save_dir` | Where to save the final MoBE model |
|
| 169 |
-
| `num_B` | Number of basis matrices (must match training) |
|
| 170 |
-
| `num_experts` | Number of experts in the original model |
|
| 171 |
-
| `start_layer` | First layer to replace with MoBE (inclusive) |
|
| 172 |
-
| `end_layer` | Last layer to replace (exclusive) |
|
| 173 |
-
| `dtype` | Target data type (`float32`, `bfloat16`, `float16`) |
|
| 174 |
-
| `activation` | Activation function used in MoBE (e.g., `"silu"`, `"tanh"`) |
|
| 175 |
-
| `grouped_experts` | Whether to group experts within the same layer |
|
| 176 |
-
|
| 177 |
-
##### 🔹 Option B: Reconstruct Standard MoE Weights
|
| 178 |
-
|
| 179 |
-
For seamless integration with existing inference engines:
|
| 180 |
-
```
|
| 181 |
-
python get_hf_model.py --base_model /root/DeepSeek-V3-0324 \
|
| 182 |
-
--mobe_dir /root/MoBE/DeepSeek-V3-0324 \
|
| 183 |
-
--save_dir /root/DeepSeek-V3-0324-MoBE-hf \
|
| 184 |
-
--start_layer 3 \
|
| 185 |
-
--end_layer 61 \
|
| 186 |
-
--num_experts 256 \
|
| 187 |
-
--dtype bfloat16
|
| 188 |
-
```
|
| 189 |
-
###### Arguments
|
| 190 |
-
|
| 191 |
-
| Argument | Description |
|
| 192 |
-
|--------|-------------|
|
| 193 |
-
| `base_model` | Path to the original model directory |
|
| 194 |
-
| `mobe_dir` | Directory containing trained MoBE matrices (`A`, `B^i`, `α_i`) |
|
| 195 |
-
| `save_dir` | Output path for reconstructed MoE model |
|
| 196 |
-
| `start_layer` | First layer to replace with MoBE (inclusive) |
|
| 197 |
-
| `end_layer` | Last layer to replace (exclusive) |
|
| 198 |
-
| `num_experts` | Number of experts in the original model |
|
| 199 |
-
| `dtype` | Target data type (`float32`, `bfloat16`, `float16`) |
|
| 200 |
-
| `grouped_experts` | Whether to group experts within the same layer |
|
| 201 |
-
|
| 202 |
-
> ✅ The reconstructed model is **fully compatible** with Hugging Face `AutoModelForCausalLM`, `vLLM`, and `SGLang`.
|
| 203 |
-
|
| 204 |
-
---
|
| 205 |
-
|
| 206 |
## 💡 MoBE Generate Example
|
| 207 |
|
| 208 |
```
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
|
| 5 |
+
### Bobchenyx/MoBE/tree/Qwen3
|
| 6 |
|
| 7 |
+
For more usage instructions and details, please check my GitHub fork.
|
| 8 |
+
https://github.com/Bobchenyx/MoBE/tree/Qwen3
|
| 9 |
|
| 10 |
|
| 11 |
<h1 align="center">
|
|
|
|
| 18 |
</div>
|
| 19 |
|
| 20 |
|
| 21 |
+
|
| 22 |
## 📘 Introduction
|
| 23 |
|
| 24 |
**MoBE (Mixture-of-Basis-Experts)** is a novel model compression technique designed for MoE LLMs developed by the **AGI Center, Ant Group Research**. It achieves efficient parameter reduction by factorizing each expert's weight matrix as:
|
|
|
|
| 38 |
- Incurs only **1%–2% absolute accuracy drop** (≈2% relative)
|
| 39 |
- Demonstrated on **Qwen3-235B**, **DeepSeek-V3 (671B)**, and **Kimi-K2-Instruct (1T)**
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
## 💡 MoBE Generate Example
|
| 42 |
|
| 43 |
```
|