Upload 6 files
Browse files- README.md +250 -0
- speaker_embeddings_path.json +1 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- de
|
| 5 |
+
- es
|
| 6 |
+
- fr
|
| 7 |
+
- hi
|
| 8 |
+
- it
|
| 9 |
+
- ja
|
| 10 |
+
- ko
|
| 11 |
+
- pl
|
| 12 |
+
- pt
|
| 13 |
+
- ru
|
| 14 |
+
- tr
|
| 15 |
+
- zh
|
| 16 |
+
thumbnail: >-
|
| 17 |
+
https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png
|
| 18 |
+
library: bark
|
| 19 |
+
license: mit
|
| 20 |
+
tags:
|
| 21 |
+
- bark
|
| 22 |
+
- audio
|
| 23 |
+
- text-to-speech
|
| 24 |
+
duplicated_from: ylacombe/bark-small
|
| 25 |
+
pipeline_tag: text-to-speech
|
| 26 |
+
---
|
| 27 |
+
|
| 28 |
+
# Bark
|
| 29 |
+
|
| 30 |
+
Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai).
|
| 31 |
+
Bark can generate highly realistic, multilingual speech as well as other audio - including music,
|
| 32 |
+
background noise and simple sound effects. The model can also produce nonverbal
|
| 33 |
+
communications like laughing, sighing and crying. To support the research community,
|
| 34 |
+
we are providing access to pretrained model checkpoints ready for inference.
|
| 35 |
+
|
| 36 |
+
The original github repo and model card can be found [here](https://github.com/suno-ai/bark).
|
| 37 |
+
|
| 38 |
+
This model is meant for research purposes only.
|
| 39 |
+
The model output is not censored and the authors do not endorse the opinions in the generated content.
|
| 40 |
+
Use at your own risk.
|
| 41 |
+
|
| 42 |
+
Two checkpoints are released:
|
| 43 |
+
- [**small** (this checkpoint)](https://huggingface.co/suno/bark-small)
|
| 44 |
+
- [large](https://huggingface.co/suno/bark)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## Example
|
| 48 |
+
|
| 49 |
+
Try out Bark yourself!
|
| 50 |
+
|
| 51 |
+
* Bark Colab:
|
| 52 |
+
|
| 53 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing">
|
| 54 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 55 |
+
</a>
|
| 56 |
+
|
| 57 |
+
* Hugging Face Colab:
|
| 58 |
+
|
| 59 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing">
|
| 60 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 61 |
+
</a>
|
| 62 |
+
|
| 63 |
+
* Hugging Face Demo:
|
| 64 |
+
|
| 65 |
+
<a target="_blank" href="https://huggingface.co/spaces/suno/bark">
|
| 66 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
|
| 67 |
+
</a>
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
## 🤗 Transformers Usage
|
| 71 |
+
|
| 72 |
+
You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards.
|
| 73 |
+
|
| 74 |
+
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy:
|
| 75 |
+
|
| 76 |
+
```
|
| 77 |
+
pip install --upgrade pip
|
| 78 |
+
pip install --upgrade transformers scipy
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can infer the bark model via the TTS pipeline in just a few lines of code!
|
| 82 |
+
|
| 83 |
+
```python
|
| 84 |
+
from transformers import pipeline
|
| 85 |
+
import scipy
|
| 86 |
+
|
| 87 |
+
synthesiser = pipeline("text-to-speech", "suno/bark-small")
|
| 88 |
+
|
| 89 |
+
speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"do_sample": True})
|
| 90 |
+
|
| 91 |
+
scipy.io.wavfile.write("bark_out.wav", rate=speech["sampling_rate"], data=speech["audio"])
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 24 kHz speech waveform for more fine-grained control.
|
| 95 |
+
|
| 96 |
+
```python
|
| 97 |
+
from transformers import AutoProcessor, AutoModel
|
| 98 |
+
|
| 99 |
+
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
| 100 |
+
model = AutoModel.from_pretrained("suno/bark-small")
|
| 101 |
+
|
| 102 |
+
inputs = processor(
|
| 103 |
+
text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."],
|
| 104 |
+
return_tensors="pt",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
speech_values = model.generate(**inputs, do_sample=True)
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
4. Listen to the speech samples either in an ipynb notebook:
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
from IPython.display import Audio
|
| 114 |
+
|
| 115 |
+
sampling_rate = model.generation_config.sample_rate
|
| 116 |
+
Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate)
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
import scipy
|
| 123 |
+
|
| 124 |
+
sampling_rate = model.config.sample_rate
|
| 125 |
+
scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark).
|
| 129 |
+
|
| 130 |
+
### Optimization tips
|
| 131 |
+
|
| 132 |
+
Refers to this [blog post](https://huggingface.co/blog/optimizing-bark#benchmark-results) to find out more about the following methods and a benchmark of their benefits.
|
| 133 |
+
|
| 134 |
+
#### Get significant speed-ups:
|
| 135 |
+
|
| 136 |
+
**Using 🤗 Better Transformer**
|
| 137 |
+
|
| 138 |
+
Better Transformer is an 🤗 Optimum feature that performs kernel fusion under the hood. You can gain 20% to 30% in speed with zero performance degradation. It only requires one line of code to export the model to 🤗 Better Transformer:
|
| 139 |
+
```python
|
| 140 |
+
model = model.to_bettertransformer()
|
| 141 |
+
```
|
| 142 |
+
Note that 🤗 Optimum must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/optimum/installation)
|
| 143 |
+
|
| 144 |
+
**Using Flash Attention 2**
|
| 145 |
+
|
| 146 |
+
Flash Attention 2 is an even faster, optimized version of the previous optimization.
|
| 147 |
+
```python
|
| 148 |
+
model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, use_flash_attention_2=True).to(device)
|
| 149 |
+
```
|
| 150 |
+
Make sure to load your model in half-precision (e.g. `torch.float16``) and to [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2.
|
| 151 |
+
|
| 152 |
+
**Note:** Flash Attention 2 is only available on newer GPUs, refer to 🤗 Better Transformer in case your GPU don't support it.
|
| 153 |
+
|
| 154 |
+
#### Reduce memory footprint:
|
| 155 |
+
|
| 156 |
+
**Using half-precision**
|
| 157 |
+
|
| 158 |
+
You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision (e.g. `torch.float16``).
|
| 159 |
+
|
| 160 |
+
**Using CPU offload**
|
| 161 |
+
|
| 162 |
+
Bark is made up of 4 sub-models, which are called up sequentially during audio generation. In other words, while one sub-model is in use, the other sub-models are idle.
|
| 163 |
+
|
| 164 |
+
If you're using a CUDA device, a simple solution to benefit from an 80% reduction in memory footprint is to offload the GPU's submodels when they're idle. This operation is called CPU offloading. You can use it with one line of code.
|
| 165 |
+
|
| 166 |
+
```python
|
| 167 |
+
model.enable_cpu_offload()
|
| 168 |
+
```
|
| 169 |
+
Note that 🤗 Accelerate must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/accelerate/basic_tutorials/install)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
## Suno Usage
|
| 174 |
+
|
| 175 |
+
You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark):
|
| 176 |
+
|
| 177 |
+
1. First install the [`bark` library](https://github.com/suno-ai/bark)
|
| 178 |
+
|
| 179 |
+
3. Run the following Python code:
|
| 180 |
+
|
| 181 |
+
```python
|
| 182 |
+
from bark import SAMPLE_RATE, generate_audio, preload_models
|
| 183 |
+
from IPython.display import Audio
|
| 184 |
+
|
| 185 |
+
# download and load all models
|
| 186 |
+
preload_models()
|
| 187 |
+
|
| 188 |
+
# generate audio from text
|
| 189 |
+
text_prompt = """
|
| 190 |
+
Hello, my name is Suno. And, uh — and I like pizza. [laughs]
|
| 191 |
+
But I also have other interests such as playing tic tac toe.
|
| 192 |
+
"""
|
| 193 |
+
speech_array = generate_audio(text_prompt)
|
| 194 |
+
|
| 195 |
+
# play text in notebook
|
| 196 |
+
Audio(speech_array, rate=SAMPLE_RATE)
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
[pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
To save `audio_array` as a WAV file:
|
| 203 |
+
|
| 204 |
+
```python
|
| 205 |
+
from scipy.io.wavfile import write as write_wav
|
| 206 |
+
|
| 207 |
+
write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array)
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
## Model Details
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
The following is additional information about the models released here.
|
| 214 |
+
|
| 215 |
+
Bark is a series of three transformer models that turn text into audio.
|
| 216 |
+
|
| 217 |
+
### Text to semantic tokens
|
| 218 |
+
- Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer)
|
| 219 |
+
- Output: semantic tokens that encode the audio to be generated
|
| 220 |
+
|
| 221 |
+
### Semantic to coarse tokens
|
| 222 |
+
- Input: semantic tokens
|
| 223 |
+
- Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook
|
| 224 |
+
|
| 225 |
+
### Coarse to fine tokens
|
| 226 |
+
- Input: the first two codebooks from EnCodec
|
| 227 |
+
- Output: 8 codebooks from EnCodec
|
| 228 |
+
|
| 229 |
+
### Architecture
|
| 230 |
+
| Model | Parameters | Attention | Output Vocab size |
|
| 231 |
+
|:-------------------------:|:----------:|------------|:-----------------:|
|
| 232 |
+
| Text to semantic tokens | 80/300 M | Causal | 10,000 |
|
| 233 |
+
| Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 |
|
| 234 |
+
| Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 |
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
### Release date
|
| 238 |
+
April 2023
|
| 239 |
+
|
| 240 |
+
## Broader Implications
|
| 241 |
+
We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages.
|
| 242 |
+
|
| 243 |
+
While we hope that this release will enable users to express their creativity and build applications that are a force
|
| 244 |
+
for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward
|
| 245 |
+
to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark,
|
| 246 |
+
we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository).
|
| 247 |
+
|
| 248 |
+
## License
|
| 249 |
+
|
| 250 |
+
Bark is licensed under the [MIT License](https://github.com/suno-ai/bark/blob/main/LICENSE), meaning it's available for commercial use.
|
speaker_embeddings_path.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"repo_or_path": "ylacombe/bark-small", "v2/zh_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_7_fine_prompt.npy"}, "zh_speaker_3": {"semantic_prompt": "speaker_embeddings/zh_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_3_fine_prompt.npy"}, "v2/ja_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_4_fine_prompt.npy"}, "v2/tr_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_5_fine_prompt.npy"}, "v2/pt_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_1_fine_prompt.npy"}, "fr_speaker_1": {"semantic_prompt": "speaker_embeddings/fr_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_1_fine_prompt.npy"}, "ko_speaker_4": {"semantic_prompt": "speaker_embeddings/ko_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_4_fine_prompt.npy"}, "v2/de_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_8_fine_prompt.npy"}, "ja_speaker_0": {"semantic_prompt": "speaker_embeddings/ja_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_0_fine_prompt.npy"}, "v2/tr_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_1_fine_prompt.npy"}, "de_speaker_3": {"semantic_prompt": "speaker_embeddings/de_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_3_fine_prompt.npy"}, "it_speaker_4": {"semantic_prompt": "speaker_embeddings/it_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_4_fine_prompt.npy"}, "ru_speaker_2": {"semantic_prompt": "speaker_embeddings/ru_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_2_fine_prompt.npy"}, "v2/ru_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_1_fine_prompt.npy"}, "v2/pt_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_3_fine_prompt.npy"}, "de_speaker_8": {"semantic_prompt": "speaker_embeddings/de_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_8_fine_prompt.npy"}, "pl_speaker_4": {"semantic_prompt": "speaker_embeddings/pl_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_4_fine_prompt.npy"}, "v2/de_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_1_fine_prompt.npy"}, "de_speaker_5": {"semantic_prompt": "speaker_embeddings/de_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_5_fine_prompt.npy"}, "v2/ko_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_3_fine_prompt.npy"}, "v2/tr_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_8_fine_prompt.npy"}, "pt_speaker_4": {"semantic_prompt": "speaker_embeddings/pt_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_4_fine_prompt.npy"}, "v2/ru_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_9_fine_prompt.npy"}, "hi_speaker_5": {"semantic_prompt": "speaker_embeddings/hi_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_5_fine_prompt.npy"}, "announcer": {"semantic_prompt": "speaker_embeddings/announcer_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/announcer_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/announcer_fine_prompt.npy"}, "it_speaker_3": {"semantic_prompt": "speaker_embeddings/it_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_3_fine_prompt.npy"}, "v2/ja_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_9_fine_prompt.npy"}, "fr_speaker_7": {"semantic_prompt": "speaker_embeddings/fr_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_7_fine_prompt.npy"}, "v2/zh_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_5_fine_prompt.npy"}, "v2/it_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_3_fine_prompt.npy"}, "v2/fr_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_5_fine_prompt.npy"}, "v2/ja_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_2_fine_prompt.npy"}, "v2/pl_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_4_fine_prompt.npy"}, "tr_speaker_0": {"semantic_prompt": "speaker_embeddings/tr_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_0_fine_prompt.npy"}, "it_speaker_2": {"semantic_prompt": "speaker_embeddings/it_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_2_fine_prompt.npy"}, "v2/en_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_7_fine_prompt.npy"}, "v2/de_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_2_fine_prompt.npy"}, "v2/fr_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_9_fine_prompt.npy"}, "v2/ru_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_4_fine_prompt.npy"}, "ru_speaker_5": {"semantic_prompt": "speaker_embeddings/ru_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_5_fine_prompt.npy"}, "es_speaker_9": {"semantic_prompt": "speaker_embeddings/es_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_9_fine_prompt.npy"}, "it_speaker_1": {"semantic_prompt": "speaker_embeddings/it_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_1_fine_prompt.npy"}, "v2/es_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_7_fine_prompt.npy"}, "ko_speaker_1": {"semantic_prompt": "speaker_embeddings/ko_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_1_fine_prompt.npy"}, "v2/ko_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_2_fine_prompt.npy"}, "v2/pt_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_7_fine_prompt.npy"}, "v2/en_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_3_fine_prompt.npy"}, "ja_speaker_9": {"semantic_prompt": "speaker_embeddings/ja_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_9_fine_prompt.npy"}, "v2/ja_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_6_fine_prompt.npy"}, "pt_speaker_0": {"semantic_prompt": "speaker_embeddings/pt_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_0_fine_prompt.npy"}, "ko_speaker_8": {"semantic_prompt": "speaker_embeddings/ko_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_8_fine_prompt.npy"}, "fr_speaker_5": {"semantic_prompt": "speaker_embeddings/fr_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_5_fine_prompt.npy"}, "tr_speaker_7": {"semantic_prompt": "speaker_embeddings/tr_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_7_fine_prompt.npy"}, "v2/ja_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_7_fine_prompt.npy"}, "v2/ko_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_1_fine_prompt.npy"}, "hi_speaker_0": {"semantic_prompt": "speaker_embeddings/hi_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_0_fine_prompt.npy"}, "v2/es_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_0_fine_prompt.npy"}, "v2/en_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_0_fine_prompt.npy"}, "es_speaker_6": {"semantic_prompt": "speaker_embeddings/es_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_6_fine_prompt.npy"}, "v2/ko_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_6_fine_prompt.npy"}, "hi_speaker_1": {"semantic_prompt": "speaker_embeddings/hi_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_1_fine_prompt.npy"}, "v2/ja_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_1_fine_prompt.npy"}, "pl_speaker_1": {"semantic_prompt": "speaker_embeddings/pl_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_1_fine_prompt.npy"}, "en_speaker_7": {"semantic_prompt": "speaker_embeddings/en_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_7_fine_prompt.npy"}, "v2/hi_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_3_fine_prompt.npy"}, "ko_speaker_3": {"semantic_prompt": "speaker_embeddings/ko_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_3_fine_prompt.npy"}, "v2/fr_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_0_fine_prompt.npy"}, "de_speaker_4": {"semantic_prompt": "speaker_embeddings/de_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_4_fine_prompt.npy"}, "v2/de_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_7_fine_prompt.npy"}, "v2/pl_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_5_fine_prompt.npy"}, "ko_speaker_6": {"semantic_prompt": "speaker_embeddings/ko_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_6_fine_prompt.npy"}, "en_speaker_2": {"semantic_prompt": "speaker_embeddings/en_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_2_fine_prompt.npy"}, "ru_speaker_3": {"semantic_prompt": "speaker_embeddings/ru_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_3_fine_prompt.npy"}, "v2/es_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_2_fine_prompt.npy"}, "v2/de_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_5_fine_prompt.npy"}, "ja_speaker_1": {"semantic_prompt": "speaker_embeddings/ja_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_1_fine_prompt.npy"}, "v2/it_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_4_fine_prompt.npy"}, "fr_speaker_0": {"semantic_prompt": "speaker_embeddings/fr_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_0_fine_prompt.npy"}, "ko_speaker_5": {"semantic_prompt": "speaker_embeddings/ko_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_5_fine_prompt.npy"}, "v2/ko_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_9_fine_prompt.npy"}, "v2/zh_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_6_fine_prompt.npy"}, "v2/fr_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_7_fine_prompt.npy"}, "v2/fr_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_3_fine_prompt.npy"}, "zh_speaker_8": {"semantic_prompt": "speaker_embeddings/zh_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_8_fine_prompt.npy"}, "v2/en_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_2_fine_prompt.npy"}, "ja_speaker_5": {"semantic_prompt": "speaker_embeddings/ja_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_5_fine_prompt.npy"}, "fr_speaker_9": {"semantic_prompt": "speaker_embeddings/fr_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_9_fine_prompt.npy"}, "v2/tr_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_6_fine_prompt.npy"}, "pl_speaker_9": {"semantic_prompt": "speaker_embeddings/pl_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_9_fine_prompt.npy"}, "hi_speaker_8": {"semantic_prompt": "speaker_embeddings/hi_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_8_fine_prompt.npy"}, "en_speaker_8": {"semantic_prompt": "speaker_embeddings/en_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_8_fine_prompt.npy"}, "de_speaker_2": {"semantic_prompt": "speaker_embeddings/de_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_2_fine_prompt.npy"}, "v2/pl_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_7_fine_prompt.npy"}, "v2/it_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_8_fine_prompt.npy"}, "pt_speaker_8": {"semantic_prompt": "speaker_embeddings/pt_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_8_fine_prompt.npy"}, "fr_speaker_3": {"semantic_prompt": "speaker_embeddings/fr_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_3_fine_prompt.npy"}, "it_speaker_7": {"semantic_prompt": "speaker_embeddings/it_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_7_fine_prompt.npy"}, "v2/ja_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_3_fine_prompt.npy"}, "v2/pt_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_2_fine_prompt.npy"}, "v2/ru_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_5_fine_prompt.npy"}, "ru_speaker_8": {"semantic_prompt": "speaker_embeddings/ru_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_8_fine_prompt.npy"}, "v2/it_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_1_fine_prompt.npy"}, "de_speaker_6": {"semantic_prompt": "speaker_embeddings/de_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_6_fine_prompt.npy"}, "pl_speaker_2": {"semantic_prompt": "speaker_embeddings/pl_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_2_fine_prompt.npy"}, "v2/ja_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_0_fine_prompt.npy"}, "zh_speaker_9": {"semantic_prompt": "speaker_embeddings/zh_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_9_fine_prompt.npy"}, "v2/en_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_4_fine_prompt.npy"}, "v2/hi_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_2_fine_prompt.npy"}, "v2/zh_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_0_fine_prompt.npy"}, "es_speaker_0": {"semantic_prompt": "speaker_embeddings/es_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_0_fine_prompt.npy"}, "pt_speaker_3": {"semantic_prompt": "speaker_embeddings/pt_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_3_fine_prompt.npy"}, "de_speaker_7": {"semantic_prompt": "speaker_embeddings/de_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_7_fine_prompt.npy"}, "v2/ja_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_8_fine_prompt.npy"}, "ru_speaker_6": {"semantic_prompt": "speaker_embeddings/ru_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_6_fine_prompt.npy"}, "tr_speaker_1": {"semantic_prompt": "speaker_embeddings/tr_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_1_fine_prompt.npy"}, "v2/en_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_1_fine_prompt.npy"}, "v2/it_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_6_fine_prompt.npy"}, "ja_speaker_6": {"semantic_prompt": "speaker_embeddings/ja_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_6_fine_prompt.npy"}, "pl_speaker_8": {"semantic_prompt": "speaker_embeddings/pl_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_8_fine_prompt.npy"}, "ru_speaker_7": {"semantic_prompt": "speaker_embeddings/ru_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_7_fine_prompt.npy"}, "v2/pl_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_0_fine_prompt.npy"}, "v2/ru_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_3_fine_prompt.npy"}, "v2/ru_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_0_fine_prompt.npy"}, "v2/fr_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_2_fine_prompt.npy"}, "hi_speaker_4": {"semantic_prompt": "speaker_embeddings/hi_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_4_fine_prompt.npy"}, "en_speaker_4": {"semantic_prompt": "speaker_embeddings/en_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_4_fine_prompt.npy"}, "tr_speaker_9": {"semantic_prompt": "speaker_embeddings/tr_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_9_fine_prompt.npy"}, "v2/it_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_9_fine_prompt.npy"}, "v2/es_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_3_fine_prompt.npy"}, "v2/ko_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_7_fine_prompt.npy"}, "v2/it_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_7_fine_prompt.npy"}, "zh_speaker_5": {"semantic_prompt": "speaker_embeddings/zh_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_5_fine_prompt.npy"}, "v2/ru_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_8_fine_prompt.npy"}, "v2/en_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_5_fine_prompt.npy"}, "v2/hi_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_7_fine_prompt.npy"}, "v2/de_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_4_fine_prompt.npy"}, "pl_speaker_6": {"semantic_prompt": "speaker_embeddings/pl_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_6_fine_prompt.npy"}, "en_speaker_1": {"semantic_prompt": "speaker_embeddings/en_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_1_fine_prompt.npy"}, "v2/es_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_8_fine_prompt.npy"}, "v2/hi_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_8_fine_prompt.npy"}, "it_speaker_0": {"semantic_prompt": "speaker_embeddings/it_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_0_fine_prompt.npy"}, "v2/ko_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_8_fine_prompt.npy"}, "pt_speaker_5": {"semantic_prompt": "speaker_embeddings/pt_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_5_fine_prompt.npy"}, "it_speaker_5": {"semantic_prompt": "speaker_embeddings/it_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_5_fine_prompt.npy"}, "zh_speaker_2": {"semantic_prompt": "speaker_embeddings/zh_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_2_fine_prompt.npy"}, "v2/fr_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_1_fine_prompt.npy"}, "v2/pl_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_6_fine_prompt.npy"}, "fr_speaker_4": {"semantic_prompt": "speaker_embeddings/fr_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_4_fine_prompt.npy"}, "v2/ru_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_6_fine_prompt.npy"}, "v2/tr_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_0_fine_prompt.npy"}, "ko_speaker_7": {"semantic_prompt": "speaker_embeddings/ko_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_7_fine_prompt.npy"}, "tr_speaker_4": {"semantic_prompt": "speaker_embeddings/tr_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_4_fine_prompt.npy"}, "v2/tr_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_3_fine_prompt.npy"}, "fr_speaker_2": {"semantic_prompt": "speaker_embeddings/fr_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_2_fine_prompt.npy"}, "v2/en_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_6_fine_prompt.npy"}, "v2/hi_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_6_fine_prompt.npy"}, "pl_speaker_0": {"semantic_prompt": "speaker_embeddings/pl_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_0_fine_prompt.npy"}, "v2/pl_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_3_fine_prompt.npy"}, "pl_speaker_3": {"semantic_prompt": "speaker_embeddings/pl_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_3_fine_prompt.npy"}, "de_speaker_9": {"semantic_prompt": "speaker_embeddings/de_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_9_fine_prompt.npy"}, "es_speaker_1": {"semantic_prompt": "speaker_embeddings/es_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_1_fine_prompt.npy"}, "es_speaker_5": {"semantic_prompt": "speaker_embeddings/es_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_5_fine_prompt.npy"}, "de_speaker_0": {"semantic_prompt": "speaker_embeddings/de_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_0_fine_prompt.npy"}, "v2/pl_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_1_fine_prompt.npy"}, "v2/tr_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_4_fine_prompt.npy"}, "v2/zh_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_9_fine_prompt.npy"}, "v2/hi_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_4_fine_prompt.npy"}, "v2/tr_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_7_fine_prompt.npy"}, "pt_speaker_6": {"semantic_prompt": "speaker_embeddings/pt_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_6_fine_prompt.npy"}, "v2/hi_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_5_fine_prompt.npy"}, "v2/de_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_9_fine_prompt.npy"}, "hi_speaker_7": {"semantic_prompt": "speaker_embeddings/hi_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_7_fine_prompt.npy"}, "fr_speaker_6": {"semantic_prompt": "speaker_embeddings/fr_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_6_fine_prompt.npy"}, "v2/it_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_5_fine_prompt.npy"}, "v2/pt_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_9_fine_prompt.npy"}, "v2/es_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_4_fine_prompt.npy"}, "hi_speaker_2": {"semantic_prompt": "speaker_embeddings/hi_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_2_fine_prompt.npy"}, "v2/it_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_0_fine_prompt.npy"}, "ja_speaker_8": {"semantic_prompt": "speaker_embeddings/ja_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_8_fine_prompt.npy"}, "v2/fr_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_6_fine_prompt.npy"}, "v2/pl_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_2_fine_prompt.npy"}, "pl_speaker_5": {"semantic_prompt": "speaker_embeddings/pl_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_5_fine_prompt.npy"}, "v2/ru_speaker_7": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_7_fine_prompt.npy"}, "ru_speaker_0": {"semantic_prompt": "speaker_embeddings/ru_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_0_fine_prompt.npy"}, "v2/pt_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_8_fine_prompt.npy"}, "zh_speaker_1": {"semantic_prompt": "speaker_embeddings/zh_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_1_fine_prompt.npy"}, "v2/zh_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_3_fine_prompt.npy"}, "v2/pl_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_8_fine_prompt.npy"}, "es_speaker_8": {"semantic_prompt": "speaker_embeddings/es_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_8_fine_prompt.npy"}, "v2/en_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_8_fine_prompt.npy"}, "v2/es_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_9_fine_prompt.npy"}, "fr_speaker_8": {"semantic_prompt": "speaker_embeddings/fr_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/fr_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/fr_speaker_8_fine_prompt.npy"}, "ja_speaker_2": {"semantic_prompt": "speaker_embeddings/ja_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_2_fine_prompt.npy"}, "ko_speaker_2": {"semantic_prompt": "speaker_embeddings/ko_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_2_fine_prompt.npy"}, "pl_speaker_7": {"semantic_prompt": "speaker_embeddings/pl_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pl_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pl_speaker_7_fine_prompt.npy"}, "v2/pt_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_4_fine_prompt.npy"}, "tr_speaker_2": {"semantic_prompt": "speaker_embeddings/tr_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_2_fine_prompt.npy"}, "pt_speaker_9": {"semantic_prompt": "speaker_embeddings/pt_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_9_fine_prompt.npy"}, "zh_speaker_7": {"semantic_prompt": "speaker_embeddings/zh_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_7_fine_prompt.npy"}, "ru_speaker_4": {"semantic_prompt": "speaker_embeddings/ru_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_4_fine_prompt.npy"}, "ja_speaker_3": {"semantic_prompt": "speaker_embeddings/ja_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_3_fine_prompt.npy"}, "en_speaker_3": {"semantic_prompt": "speaker_embeddings/en_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_3_fine_prompt.npy"}, "v2/de_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_6_fine_prompt.npy"}, "v2/ja_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/ja_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ja_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ja_speaker_5_fine_prompt.npy"}, "tr_speaker_3": {"semantic_prompt": "speaker_embeddings/tr_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_3_fine_prompt.npy"}, "v2/it_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/it_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/it_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/it_speaker_2_fine_prompt.npy"}, "v2/ru_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/ru_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ru_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ru_speaker_2_fine_prompt.npy"}, "v2/es_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_1_fine_prompt.npy"}, "v2/ko_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_0_fine_prompt.npy"}, "v2/zh_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_4_fine_prompt.npy"}, "ko_speaker_9": {"semantic_prompt": "speaker_embeddings/ko_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_9_fine_prompt.npy"}, "ru_speaker_1": {"semantic_prompt": "speaker_embeddings/ru_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_1_fine_prompt.npy"}, "v2/tr_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_9_fine_prompt.npy"}, "pt_speaker_2": {"semantic_prompt": "speaker_embeddings/pt_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_2_fine_prompt.npy"}, "v2/de_speaker_3": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_3_fine_prompt.npy"}, "es_speaker_4": {"semantic_prompt": "speaker_embeddings/es_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_4_fine_prompt.npy"}, "v2/ko_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_5_fine_prompt.npy"}, "pt_speaker_1": {"semantic_prompt": "speaker_embeddings/pt_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_1_fine_prompt.npy"}, "zh_speaker_6": {"semantic_prompt": "speaker_embeddings/zh_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_6_fine_prompt.npy"}, "zh_speaker_4": {"semantic_prompt": "speaker_embeddings/zh_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_4_fine_prompt.npy"}, "tr_speaker_6": {"semantic_prompt": "speaker_embeddings/tr_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_6_fine_prompt.npy"}, "v2/en_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/en_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/en_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/en_speaker_9_fine_prompt.npy"}, "v2/de_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/de_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/de_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/de_speaker_0_fine_prompt.npy"}, "v2/es_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_6_fine_prompt.npy"}, "pt_speaker_7": {"semantic_prompt": "speaker_embeddings/pt_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/pt_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/pt_speaker_7_fine_prompt.npy"}, "hi_speaker_3": {"semantic_prompt": "speaker_embeddings/hi_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_3_fine_prompt.npy"}, "es_speaker_7": {"semantic_prompt": "speaker_embeddings/es_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_7_fine_prompt.npy"}, "v2/zh_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_2_fine_prompt.npy"}, "ja_speaker_7": {"semantic_prompt": "speaker_embeddings/ja_speaker_7_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_7_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_7_fine_prompt.npy"}, "de_speaker_1": {"semantic_prompt": "speaker_embeddings/de_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/de_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/de_speaker_1_fine_prompt.npy"}, "en_speaker_5": {"semantic_prompt": "speaker_embeddings/en_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_5_fine_prompt.npy"}, "v2/ko_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/ko_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/ko_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/ko_speaker_4_fine_prompt.npy"}, "v2/pt_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_5_fine_prompt.npy"}, "tr_speaker_8": {"semantic_prompt": "speaker_embeddings/tr_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_8_fine_prompt.npy"}, "tr_speaker_5": {"semantic_prompt": "speaker_embeddings/tr_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/tr_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/tr_speaker_5_fine_prompt.npy"}, "v2/zh_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_8_fine_prompt.npy"}, "en_speaker_0": {"semantic_prompt": "speaker_embeddings/en_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_0_fine_prompt.npy"}, "hi_speaker_6": {"semantic_prompt": "speaker_embeddings/hi_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_6_fine_prompt.npy"}, "v2/fr_speaker_8": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_8_fine_prompt.npy"}, "es_speaker_3": {"semantic_prompt": "speaker_embeddings/es_speaker_3_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_3_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_3_fine_prompt.npy"}, "ko_speaker_0": {"semantic_prompt": "speaker_embeddings/ko_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ko_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ko_speaker_0_fine_prompt.npy"}, "v2/pt_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_0_fine_prompt.npy"}, "ja_speaker_4": {"semantic_prompt": "speaker_embeddings/ja_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ja_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ja_speaker_4_fine_prompt.npy"}, "v2/tr_speaker_2": {"semantic_prompt": "speaker_embeddings/v2/tr_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/tr_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/tr_speaker_2_fine_prompt.npy"}, "es_speaker_2": {"semantic_prompt": "speaker_embeddings/es_speaker_2_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/es_speaker_2_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/es_speaker_2_fine_prompt.npy"}, "v2/hi_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_9_fine_prompt.npy"}, "zh_speaker_0": {"semantic_prompt": "speaker_embeddings/zh_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/zh_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/zh_speaker_0_fine_prompt.npy"}, "hi_speaker_9": {"semantic_prompt": "speaker_embeddings/hi_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/hi_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/hi_speaker_9_fine_prompt.npy"}, "v2/pt_speaker_6": {"semantic_prompt": "speaker_embeddings/v2/pt_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pt_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pt_speaker_6_fine_prompt.npy"}, "v2/hi_speaker_0": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_0_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_0_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_0_fine_prompt.npy"}, "it_speaker_9": {"semantic_prompt": "speaker_embeddings/it_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_9_fine_prompt.npy"}, "it_speaker_6": {"semantic_prompt": "speaker_embeddings/it_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_6_fine_prompt.npy"}, "it_speaker_8": {"semantic_prompt": "speaker_embeddings/it_speaker_8_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/it_speaker_8_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/it_speaker_8_fine_prompt.npy"}, "v2/fr_speaker_4": {"semantic_prompt": "speaker_embeddings/v2/fr_speaker_4_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/fr_speaker_4_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/fr_speaker_4_fine_prompt.npy"}, "v2/pl_speaker_9": {"semantic_prompt": "speaker_embeddings/v2/pl_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/pl_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/pl_speaker_9_fine_prompt.npy"}, "v2/zh_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/zh_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/zh_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/zh_speaker_1_fine_prompt.npy"}, "ru_speaker_9": {"semantic_prompt": "speaker_embeddings/ru_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/ru_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/ru_speaker_9_fine_prompt.npy"}, "v2/hi_speaker_1": {"semantic_prompt": "speaker_embeddings/v2/hi_speaker_1_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/hi_speaker_1_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/hi_speaker_1_fine_prompt.npy"}, "en_speaker_6": {"semantic_prompt": "speaker_embeddings/en_speaker_6_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_6_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_6_fine_prompt.npy"}, "en_speaker_9": {"semantic_prompt": "speaker_embeddings/en_speaker_9_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/en_speaker_9_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/en_speaker_9_fine_prompt.npy"}, "v2/es_speaker_5": {"semantic_prompt": "speaker_embeddings/v2/es_speaker_5_semantic_prompt.npy", "coarse_prompt": "speaker_embeddings/v2/es_speaker_5_coarse_prompt.npy", "fine_prompt": "speaker_embeddings/v2/es_speaker_5_fine_prompt.npy"}}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"clean_up_tokenization_spaces": true,
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"do_lower_case": false,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 512,
|
| 7 |
+
"pad_token": "[PAD]",
|
| 8 |
+
"processor_class": "BarkProcessor",
|
| 9 |
+
"sep_token": "[SEP]",
|
| 10 |
+
"strip_accents": null,
|
| 11 |
+
"tokenize_chinese_chars": true,
|
| 12 |
+
"tokenizer_class": "BertTokenizer",
|
| 13 |
+
"unk_token": "[UNK]"
|
| 14 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|