--- library_name: transformers license: apache-2.0 base_model: kakaocorp/kanana-1.5-2.1b-instruct-2505 tags: - axolotl - generated_from_trainer datasets: - train.jsonl model-index: - name: fc-reasoning-2.1b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.2` ```yaml base_model: kakaocorp/kanana-1.5-2.1b-instruct-2505 load_in_8bit: false load_in_4bit: false datasets: - path: train.jsonl type: chat_template dataset_prepared_path: preprocess val_set_size: 0.01 output_dir: ./outputs dataloader_num_workers: 56 adapter: lora_model_dir: sequence_len: 16384 sample_packing: false eval_sample_packing: false pad_to_sequence_len: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: fastcampus wandb_entity: guijinson wandb_watch: wandb_name: fc-proj2-reasoning-2.1b wandb_log_model: hub_model_id: amphora/fc-reasoning-2.1b gradient_accumulation_steps: 64 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 2e-5 bf16: auto tf32: false gradient_checkpointing: resume_from_checkpoint: logging_steps: 1 flash_attention: true warmup_ratio: 0.05 weight_decay: 0.01 evals_per_epoch: 0 saves_per_epoch: 1 ```

# fc-reasoning-2.1b This model is a fine-tuned version of [kakaocorp/kanana-1.5-2.1b-instruct-2505](https://huggingface.co/kakaocorp/kanana-1.5-2.1b-instruct-2505) on the train.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 53 - training_steps: 1072 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4