File size: 16,504 Bytes
02c2c9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
"""
SuperCoder - Unified Application
All-in-one file containing Gradio UI, API server, tunnel support, and AI logic.
"""
import os
import sys
import time
import uuid
import argparse
import subprocess
import traceback
import requests
import json
from pathlib import Path
from typing import Optional, List, Dict, Any, Generator, Tuple
from collections import defaultdict
from functools import partial
from multiprocessing import Process
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
# Import config (only external dependency)
from config import *
# ============================================================================
# SERVER MANAGER - llama.cpp server lifecycle
# ============================================================================
_server_process = None
_server_info = {}
def check_server_health() -> bool:
try:
# Check if Ollama is responding
response = requests.get(f"{LLAMA_SERVER_URL}/api/tags", timeout=2)
return response.status_code == 200 and len(response.json().get("models", [])) > 0
except:
return False
def start_llama_server() -> bool:
global _server_process, _server_info
if _server_process and check_server_health():
return True
print(f"\nπ Starting llama.cpp server on {LLAMA_SERVER_URL}")
try:
cmd = [
LLAMA_SERVER_PATH, "-hf", LLAMA_MODEL,
"-c", str(MODEL_CONTEXT_WINDOW),
"-t", str(MODEL_THREADS),
"-ngl", str(MODEL_GPU_LAYERS),
"--host", LLAMA_SERVER_HOST, "--port", str(LLAMA_SERVER_PORT)
]
_server_process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
_server_info = {'pid': _server_process.pid, 'url': LLAMA_SERVER_URL}
# Wait for ready
for _ in range(SERVER_STARTUP_TIMEOUT * 2):
if check_server_health():
print(f"β
Server ready (PID: {_server_process.pid})")
return True
time.sleep(0.5)
return False
except Exception as e:
print(f"β Server start failed: {e}")
return False
def stop_llama_server():
global _server_process
if _server_process:
_server_process.terminate()
_server_process.wait()
_server_process = None
def get_llm():
return True if check_server_health() else None
def get_model_info():
return _server_info.copy()
# ============================================================================
# SESSION MANAGER - Chat history
# ============================================================================
SESSION_STORE = {}
SESSION_METADATA = defaultdict(dict)
def get_session_id(request: gr.Request) -> str:
return request.session_hash
def get_history(session_id: str, create_if_missing: bool = False) -> List[Dict]:
if session_id not in SESSION_STORE and create_if_missing:
SESSION_STORE[session_id] = []
return SESSION_STORE.get(session_id, [])
def add_to_history(session_id: str, role: str, text: str):
history = get_history(session_id, create_if_missing=True)
history.append({"role": role, "text": text, "timestamp": time.time()})
def clear_history(session_id: str):
if session_id in SESSION_STORE:
SESSION_STORE[session_id] = []
def convert_history_to_gradio_messages(history: List[Dict]) -> List[Dict]:
return [{"role": msg["role"], "content": msg["text"]} for msg in history]
def calculate_safe_max_tokens(history: List[Dict], requested: int, max_context: int) -> int:
history_chars = sum(len(msg["text"]) for msg in history)
estimated_tokens = history_chars // 4
available = max_context - estimated_tokens - SYSTEM_OVERHEAD_TOKENS
return max(min(requested, available, SAFE_MAX_TOKENS_CAP), MIN_TOKENS)
def get_recent_history(session_id: str, max_messages: int = 10) -> List[Dict]:
history = get_history(session_id)
return history[-max_messages:] if len(history) > max_messages else history
def update_session_activity(session_id: str):
SESSION_METADATA[session_id]['last_activity'] = time.time()
# ============================================================================
# GENERATION - AI response generation
# ============================================================================
def generate_response_stream(session_id: str, user_message: str, max_tokens: int,
temperature: float, stream: bool = True) -> Generator[str, None, None]:
if not get_llm():
yield "β οΈ Server not running"
return
update_session_activity(session_id)
recent_history = get_recent_history(session_id, max_messages=6)
safe_tokens = calculate_safe_max_tokens(recent_history, max_tokens, MODEL_CONTEXT_WINDOW)
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
for msg in recent_history:
messages.append({"role": msg["role"], "content": msg["text"]})
messages.append({"role": "user", "content": user_message})
try:
payload = {
"messages": messages, "max_tokens": safe_tokens,
"temperature": max(0.01, temperature),
"top_p": DEFAULT_TOP_P, "stream": stream
}
if stream:
response = requests.post(f"{LLAMA_SERVER_URL}/v1/chat/completions",
json=payload, stream=True, timeout=300)
full_response = ""
for line in response.iter_lines():
if line:
line_text = line.decode('utf-8')
if line_text.startswith('data: '):
line_text = line_text[6:]
if line_text.strip() == '[DONE]':
break
try:
chunk = json.loads(line_text)
content = chunk.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content:
full_response += content
yield full_response.strip()
except:
continue
else:
# Use Ollama API format instead of OpenAI format
ollama_payload = {
"model": LLAMA_MODEL,
"messages": messages,
"stream": False
}
response = requests.post(f"{LLAMA_SERVER_URL}/api/chat",
json=ollama_payload, timeout=300)
yield response.json()["message"]["content"].strip()
except Exception as e:
yield f"β οΈ Error: {str(e)}"
# ============================================================================
# GRADIO UI COMPONENTS
# ============================================================================
def create_gradio_interface(error_msg: Optional[str] = None):
with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft(primary_hue=PRIMARY_HUE)) as demo:
gr.Markdown(f"# π€ {APP_TITLE}\n### {APP_DESCRIPTION}\n---")
if error_msg:
gr.Markdown(f"β οΈ {error_msg}")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="π¬ Conversation", height=CHAT_HEIGHT,
type="messages", show_copy_button=True)
with gr.Row():
txt_input = gr.Textbox(placeholder="Ask me about code...",
show_label=False, scale=5, lines=2)
send_btn = gr.Button("Send π", scale=1, variant="primary")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Settings")
temp_slider = gr.Slider(0.0, 1.0, value=DEFAULT_TEMPERATURE, step=0.05,
label="π‘οΈ Temperature")
tokens_slider = gr.Slider(MIN_TOKENS, SAFE_MAX_TOKENS_CAP,
value=DEFAULT_MAX_TOKENS, step=128, label="π Max Tokens")
stream_checkbox = gr.Checkbox(label="β‘ Stream", value=True)
clear_btn = gr.Button("ποΈ Clear", variant="stop", size="sm")
session_state = gr.State()
# Event handlers
def handle_message(session_id, msg, temp, tokens, stream, request: gr.Request):
session_id = session_id or get_session_id(request)
if not msg.strip():
return session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
add_to_history(session_id, "user", msg)
yield session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
full_response = ""
for partial in generate_response_stream(session_id, msg, tokens, temp, stream):
full_response = partial
temp_hist = get_history(session_id).copy()
temp_hist.append({"role": "assistant", "text": full_response})
yield session_id, convert_history_to_gradio_messages(temp_hist), ""
add_to_history(session_id, "assistant", full_response)
yield session_id, convert_history_to_gradio_messages(get_history(session_id)), ""
def handle_clear(session_id, request: gr.Request):
session_id = session_id or get_session_id(request)
clear_history(session_id)
return session_id, [], ""
txt_input.submit(handle_message, [session_state, txt_input, temp_slider, tokens_slider, stream_checkbox],
[session_state, chatbot, txt_input])
send_btn.click(handle_message, [session_state, txt_input, temp_slider, tokens_slider, stream_checkbox],
[session_state, chatbot, txt_input])
clear_btn.click(handle_clear, [session_state], [session_state, chatbot, txt_input])
return demo
# ============================================================================
# FASTAPI SERVER
# ============================================================================
api_app = FastAPI(title="SuperCoder API")
api_app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
api_sessions = {}
class ChatMessage(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
messages: List[ChatMessage]
temperature: Optional[float] = 0.1
max_tokens: Optional[int] = 512
class ChatResponse(BaseModel):
response: str
session_id: str
@api_app.get("/health")
async def health():
return {"status": "ok" if get_llm() else "model_not_loaded"}
@api_app.post("/api/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
if not get_llm():
raise HTTPException(503, "Model not loaded")
session_id = str(uuid.uuid4())
api_sessions[session_id] = []
user_message = request.messages[-1].content
api_sessions[session_id].append({"role": "user", "text": user_message})
full_response = ""
for partial in generate_response_stream(session_id, user_message, request.max_tokens,
request.temperature, False):
full_response = partial
api_sessions[session_id].append({"role": "assistant", "text": full_response})
return ChatResponse(response=full_response, session_id=session_id)
def run_api_server():
uvicorn.run(api_app, host="0.0.0.0", port=8000, log_level="info")
# ============================================================================
# TUNNEL SUPPORT
# ============================================================================
def start_ngrok_tunnel(port: int = 8000) -> Optional[str]:
try:
subprocess.run(["which", "ngrok"], capture_output=True, check=True)
subprocess.Popen(["ngrok", "http", str(port)], stdout=subprocess.PIPE)
time.sleep(3)
response = requests.get("http://127.0.0.1:4040/api/tunnels", timeout=5)
tunnels = response.json()
if tunnels.get("tunnels"):
url = tunnels["tunnels"][0]["public_url"]
print(f"β
Tunnel: {url}")
return url
except:
print("β ngrok not found. Install: brew install ngrok")
return None
def start_cloudflare_tunnel(port: int = 8000) -> Optional[str]:
try:
subprocess.run(["which", "cloudflared"], capture_output=True, check=True)
proc = subprocess.Popen(["cloudflared", "tunnel", "--url", f"http://localhost:{port}"],
stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
time.sleep(3)
for _ in range(30):
line = proc.stdout.readline()
if "trycloudflare.com" in line:
import re
urls = re.findall(r'https://[^\s]+\.trycloudflare\.com', line)
if urls:
print(f"β
Tunnel: {urls[0]}")
return urls[0]
time.sleep(1)
except:
print("β cloudflared not found. Install: brew install cloudflared")
return None
# ============================================================================
# MAIN LAUNCHER
# ============================================================================
def main():
parser = argparse.ArgumentParser(description="SuperCoder - All-in-One AI Coding Assistant")
parser.add_argument("--mode", choices=["gradio", "api", "both"], default="gradio",
help="Run mode: gradio (UI), api (server), or both")
parser.add_argument("--tunnel", choices=["ngrok", "cloudflare"],
help="Start tunnel for public access")
parser.add_argument("--no-server", action="store_true",
help="Don't start llama.cpp server (assume already running)")
args = parser.parse_args()
print("ββββββββββββββββββββββββββββββββββββββββββββββββββ")
print("β SuperCoder - Unified Launcher β")
print("ββββββββββββββββββββββββββββββββββββββββββββββββββ")
# Start llama.cpp server
if not args.no_server:
success = start_llama_server()
error_msg = None if success else "Failed to start llama.cpp server"
else:
error_msg = None
# Run selected mode
if args.mode == "gradio":
print(f"\nπ Mode: Gradio UI\nπ Access: http://localhost:{SERVER_PORT}\n")
demo = create_gradio_interface(error_msg)
demo.launch(server_name=SERVER_NAME, server_port=SERVER_PORT)
elif args.mode == "api":
print(f"\nπ Mode: API Server\nπ‘ API: http://localhost:8000/api/chat\n")
if args.tunnel:
api_proc = Process(target=run_api_server)
api_proc.start()
time.sleep(3)
if args.tunnel == "ngrok":
start_ngrok_tunnel(8000)
else:
start_cloudflare_tunnel(8000)
try:
api_proc.join()
except KeyboardInterrupt:
api_proc.terminate()
else:
run_api_server()
elif args.mode == "both":
print(f"\nπ Mode: Both Gradio + API\nπ¨ UI: http://localhost:{SERVER_PORT}\nπ‘ API: http://localhost:8000\n")
gradio_proc = Process(target=lambda: create_gradio_interface(error_msg).launch(
server_name=SERVER_NAME, server_port=SERVER_PORT))
api_proc = Process(target=run_api_server)
gradio_proc.start()
api_proc.start()
if args.tunnel:
time.sleep(3)
if args.tunnel == "ngrok":
start_ngrok_tunnel(8000)
else:
start_cloudflare_tunnel(8000)
try:
gradio_proc.join()
api_proc.join()
except KeyboardInterrupt:
gradio_proc.terminate()
api_proc.terminate()
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nπ Shutting down...")
stop_llama_server()
|