Οβ SO-101 Libero Fine-tuned Model
This is a Οβ (pi-zero) model fine-tuned on the Libero dataset for manipulation tasks with the SO-101 follower arm.
Model Details
- Model Type: Οβ (Physical Intelligence Zero)
- Robot Type: SO-101 Follower Arm
- Dataset: Libero
- Task: Manipulation (pick and place, object manipulation)
- Input: RGB images (224x224) + robot state (32-dim)
- Output: Robot actions (7-dim)
Usage with LeRobot
Recording with Policy
lerobot-record \
--robot.type=so101_follower \
--robot.port=/dev/ttyACM0 \
--robot.cameras='{"up":{"type":"opencv","index_or_path":0,"width":640,"height":480,"fps":30}}' \
--robot.id=my_awesome_follower_arm \
--dataset.single_task="pick up the screwdriver" \
--policy.path=SilverKittyy/pi0_so101_libero_finetune \
--dataset.repo_id=local_eval \
--dataset.num_episodes=1
Evaluation
lerobot-eval \
--policy.path=SilverKittyy/pi0_so101_libero_finetune \
--dataset.repo_id=your_evaluation_dataset \
--eval.n_episodes=10
Model Architecture
- Vision Encoder: Frozen vision encoder
- State Processing: 32-dimensional state vector
- Action Space: 7-dimensional (6 joint positions + gripper)
- Normalization: Mean-std normalization for all inputs/outputs
Training Details
- Base Model: Οβ pre-trained model
- Fine-tuning Dataset: Libero manipulation tasks
- Training Steps: 29,999
- Learning Rate: 2.5e-05
- Optimizer: AdamW with cosine decay
Hardware Requirements
- Robot: SO-101 Follower Arm
- Camera: OpenCV-compatible camera (e.g., /dev/video0)
- Compute: CUDA-capable GPU recommended
Safety Notes
- This model is trained for manipulation tasks
- Always ensure proper safety measures when using with real hardware
- Test in simulation or with safety constraints before real-world deployment
- Downloads last month
- 3