|
|
import itertools |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
|
from diffusers.loaders import PeftAdapterMixin |
|
|
from diffusers.loaders.single_file_model import FromOriginalModelMixin |
|
|
from diffusers.models.attention_processor import Attention |
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
from diffusers.utils import ( |
|
|
USE_PEFT_BACKEND, |
|
|
logging, |
|
|
scale_lora_layers, |
|
|
unscale_lora_layers, |
|
|
) |
|
|
from einops import rearrange |
|
|
|
|
|
from ...utils.import_utils import is_triton_available |
|
|
from ...utils.teacache_util import TeaCacheParams |
|
|
from ..attention_processor import ( |
|
|
OmniGen2AttnProcessor, |
|
|
OmniGen2AttnProcessorFlash2Varlen, |
|
|
) |
|
|
from .block_lumina2 import ( |
|
|
Lumina2CombinedTimestepCaptionEmbedding, |
|
|
LuminaFeedForward, |
|
|
LuminaLayerNormContinuous, |
|
|
LuminaRMSNormZero, |
|
|
) |
|
|
from .repo import OmniGen2RotaryPosEmbed |
|
|
|
|
|
if is_triton_available(): |
|
|
from ...ops.triton.layer_norm import RMSNorm |
|
|
else: |
|
|
from torch.nn import RMSNorm |
|
|
|
|
|
from ...cache_functions import cal_type |
|
|
from ...taylorseer_utils import ( |
|
|
derivative_approximation, |
|
|
taylor_cache_init, |
|
|
taylor_formula, |
|
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class OmniGen2TransformerBlock(nn.Module): |
|
|
""" |
|
|
Transformer block for OmniGen2 model. |
|
|
|
|
|
This block implements a transformer layer with: |
|
|
- Multi-head attention with flash attention |
|
|
- Feed-forward network with SwiGLU activation |
|
|
- RMS normalization |
|
|
- Optional modulation for conditional generation |
|
|
|
|
|
Args: |
|
|
dim: Dimension of the input and output tensors |
|
|
num_attention_heads: Number of attention heads |
|
|
num_kv_heads: Number of key-value heads |
|
|
multiple_of: Multiple of which the hidden dimension should be |
|
|
ffn_dim_multiplier: Multiplier for the feed-forward network dimension |
|
|
norm_eps: Epsilon value for normalization layers |
|
|
modulation: Whether to use modulation for conditional generation |
|
|
use_fused_rms_norm: Whether to use fused RMS normalization |
|
|
use_fused_swiglu: Whether to use fused SwiGLU activation |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
num_attention_heads: int, |
|
|
num_kv_heads: int, |
|
|
multiple_of: int, |
|
|
ffn_dim_multiplier: float, |
|
|
norm_eps: float, |
|
|
modulation: bool = True, |
|
|
) -> None: |
|
|
"""Initialize the transformer block.""" |
|
|
super().__init__() |
|
|
self.head_dim = dim // num_attention_heads |
|
|
self.modulation = modulation |
|
|
|
|
|
try: |
|
|
processor = OmniGen2AttnProcessorFlash2Varlen() |
|
|
except ImportError: |
|
|
processor = OmniGen2AttnProcessor() |
|
|
|
|
|
|
|
|
self.attn = Attention( |
|
|
query_dim=dim, |
|
|
cross_attention_dim=None, |
|
|
dim_head=dim // num_attention_heads, |
|
|
qk_norm="rms_norm", |
|
|
heads=num_attention_heads, |
|
|
kv_heads=num_kv_heads, |
|
|
eps=1e-5, |
|
|
bias=False, |
|
|
out_bias=False, |
|
|
processor=processor, |
|
|
) |
|
|
|
|
|
|
|
|
self.feed_forward = LuminaFeedForward( |
|
|
dim=dim, |
|
|
inner_dim=4 * dim, |
|
|
multiple_of=multiple_of, |
|
|
ffn_dim_multiplier=ffn_dim_multiplier, |
|
|
) |
|
|
|
|
|
|
|
|
if modulation: |
|
|
self.norm1 = LuminaRMSNormZero( |
|
|
embedding_dim=dim, norm_eps=norm_eps, norm_elementwise_affine=True |
|
|
) |
|
|
else: |
|
|
self.norm1 = RMSNorm(dim, eps=norm_eps) |
|
|
|
|
|
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) |
|
|
self.norm2 = RMSNorm(dim, eps=norm_eps) |
|
|
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) |
|
|
|
|
|
self.initialize_weights() |
|
|
|
|
|
def initialize_weights(self) -> None: |
|
|
""" |
|
|
Initialize the weights of the transformer block. |
|
|
|
|
|
Uses Xavier uniform initialization for linear layers and zero initialization for biases. |
|
|
""" |
|
|
nn.init.xavier_uniform_(self.attn.to_q.weight) |
|
|
nn.init.xavier_uniform_(self.attn.to_k.weight) |
|
|
nn.init.xavier_uniform_(self.attn.to_v.weight) |
|
|
nn.init.xavier_uniform_(self.attn.to_out[0].weight) |
|
|
|
|
|
nn.init.xavier_uniform_(self.feed_forward.linear_1.weight) |
|
|
nn.init.xavier_uniform_(self.feed_forward.linear_2.weight) |
|
|
nn.init.xavier_uniform_(self.feed_forward.linear_3.weight) |
|
|
|
|
|
if self.modulation: |
|
|
nn.init.zeros_(self.norm1.linear.weight) |
|
|
nn.init.zeros_(self.norm1.linear.bias) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: torch.Tensor, |
|
|
image_rotary_emb: torch.Tensor, |
|
|
temb: Optional[torch.Tensor] = None, |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Forward pass of the transformer block. |
|
|
|
|
|
Args: |
|
|
hidden_states: Input hidden states tensor |
|
|
attention_mask: Attention mask tensor |
|
|
image_rotary_emb: Rotary embeddings for image tokens |
|
|
temb: Optional timestep embedding tensor |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Output hidden states after transformer block processing |
|
|
""" |
|
|
enable_taylorseer = getattr(self, "enable_taylorseer", False) |
|
|
if enable_taylorseer: |
|
|
if self.modulation: |
|
|
if temb is None: |
|
|
raise ValueError("temb must be provided when modulation is enabled") |
|
|
|
|
|
if self.current["type"] == "full": |
|
|
self.current["module"] = "total" |
|
|
taylor_cache_init(cache_dic=self.cache_dic, current=self.current) |
|
|
|
|
|
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1( |
|
|
hidden_states, temb |
|
|
) |
|
|
attn_output = self.attn( |
|
|
hidden_states=norm_hidden_states, |
|
|
encoder_hidden_states=norm_hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
hidden_states = hidden_states + gate_msa.unsqueeze( |
|
|
1 |
|
|
).tanh() * self.norm2(attn_output) |
|
|
mlp_output = self.feed_forward( |
|
|
self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)) |
|
|
) |
|
|
hidden_states = hidden_states + gate_mlp.unsqueeze( |
|
|
1 |
|
|
).tanh() * self.ffn_norm2(mlp_output) |
|
|
|
|
|
derivative_approximation( |
|
|
cache_dic=self.cache_dic, |
|
|
current=self.current, |
|
|
feature=hidden_states, |
|
|
) |
|
|
|
|
|
elif self.current["type"] == "Taylor": |
|
|
self.current["module"] = "total" |
|
|
hidden_states = taylor_formula( |
|
|
cache_dic=self.cache_dic, current=self.current |
|
|
) |
|
|
else: |
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
attn_output = self.attn( |
|
|
hidden_states=norm_hidden_states, |
|
|
encoder_hidden_states=norm_hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
hidden_states = hidden_states + self.norm2(attn_output) |
|
|
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) |
|
|
hidden_states = hidden_states + self.ffn_norm2(mlp_output) |
|
|
else: |
|
|
if self.modulation: |
|
|
if temb is None: |
|
|
raise ValueError("temb must be provided when modulation is enabled") |
|
|
|
|
|
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1( |
|
|
hidden_states, temb |
|
|
) |
|
|
attn_output = self.attn( |
|
|
hidden_states=norm_hidden_states, |
|
|
encoder_hidden_states=norm_hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
hidden_states = hidden_states + gate_msa.unsqueeze( |
|
|
1 |
|
|
).tanh() * self.norm2(attn_output) |
|
|
mlp_output = self.feed_forward( |
|
|
self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)) |
|
|
) |
|
|
hidden_states = hidden_states + gate_mlp.unsqueeze( |
|
|
1 |
|
|
).tanh() * self.ffn_norm2(mlp_output) |
|
|
else: |
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
attn_output = self.attn( |
|
|
hidden_states=norm_hidden_states, |
|
|
encoder_hidden_states=norm_hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
) |
|
|
hidden_states = hidden_states + self.norm2(attn_output) |
|
|
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) |
|
|
hidden_states = hidden_states + self.ffn_norm2(mlp_output) |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class OmniGen2Transformer3DModel( |
|
|
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin |
|
|
): |
|
|
""" |
|
|
OmniGen2 Transformer 3D Model (modified to output frame sequences). |
|
|
|
|
|
A transformer-based diffusion model for image generation with: |
|
|
- Patch-based image processing |
|
|
- Rotary position embeddings |
|
|
- Multi-head attention |
|
|
- Conditional generation support |
|
|
|
|
|
Args: |
|
|
patch_size: Size of image patches |
|
|
in_channels: Number of input channels |
|
|
out_channels: Number of output channels (defaults to in_channels) |
|
|
hidden_size: Size of hidden layers |
|
|
num_layers: Number of transformer layers |
|
|
num_refiner_layers: Number of refiner layers |
|
|
num_attention_heads: Number of attention heads |
|
|
num_kv_heads: Number of key-value heads |
|
|
multiple_of: Multiple of which the hidden dimension should be |
|
|
ffn_dim_multiplier: Multiplier for feed-forward network dimension |
|
|
norm_eps: Epsilon value for normalization layers |
|
|
axes_dim_rope: Dimensions for rotary position embeddings |
|
|
axes_lens: Lengths for rotary position embeddings |
|
|
text_feat_dim: Dimension of text features |
|
|
timestep_scale: Scale factor for timestep embeddings |
|
|
use_fused_rms_norm: Whether to use fused RMS normalization |
|
|
use_fused_swiglu: Whether to use fused SwiGLU activation |
|
|
""" |
|
|
|
|
|
_supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["Omnigen2TransformerBlock"] |
|
|
_skip_layerwise_casting_patterns = ["x_embedder", "norm"] |
|
|
|
|
|
@register_to_config |
|
|
def __init__( |
|
|
self, |
|
|
patch_size: int = 2, |
|
|
in_channels: int = 16, |
|
|
out_channels: Optional[int] = None, |
|
|
hidden_size: int = 2304, |
|
|
num_layers: int = 26, |
|
|
num_refiner_layers: int = 2, |
|
|
num_attention_heads: int = 24, |
|
|
num_kv_heads: int = 8, |
|
|
multiple_of: int = 256, |
|
|
ffn_dim_multiplier: Optional[float] = None, |
|
|
norm_eps: float = 1e-5, |
|
|
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), |
|
|
axes_lens: Tuple[int, int, int] = (300, 512, 512), |
|
|
text_feat_dim: int = 1024, |
|
|
timestep_scale: float = 1.0, |
|
|
) -> None: |
|
|
"""Initialize the OmniGen2 transformer model.""" |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
if (hidden_size // num_attention_heads) != sum(axes_dim_rope): |
|
|
raise ValueError( |
|
|
f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) " |
|
|
f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})" |
|
|
) |
|
|
|
|
|
self.out_channels = out_channels or in_channels |
|
|
|
|
|
|
|
|
self.rope_embedder = OmniGen2RotaryPosEmbed( |
|
|
theta=10000, |
|
|
axes_dim=axes_dim_rope, |
|
|
axes_lens=axes_lens, |
|
|
patch_size=patch_size, |
|
|
) |
|
|
|
|
|
self.x_embedder = nn.Linear( |
|
|
in_features=patch_size * patch_size * in_channels, |
|
|
out_features=hidden_size, |
|
|
) |
|
|
|
|
|
self.ref_image_patch_embedder = nn.Linear( |
|
|
in_features=patch_size * patch_size * in_channels, |
|
|
out_features=hidden_size, |
|
|
) |
|
|
|
|
|
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( |
|
|
hidden_size=hidden_size, |
|
|
text_feat_dim=text_feat_dim, |
|
|
norm_eps=norm_eps, |
|
|
timestep_scale=timestep_scale, |
|
|
) |
|
|
|
|
|
|
|
|
self.noise_refiner = nn.ModuleList( |
|
|
[ |
|
|
OmniGen2TransformerBlock( |
|
|
hidden_size, |
|
|
num_attention_heads, |
|
|
num_kv_heads, |
|
|
multiple_of, |
|
|
ffn_dim_multiplier, |
|
|
norm_eps, |
|
|
modulation=True, |
|
|
) |
|
|
for _ in range(num_refiner_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.ref_image_refiner = nn.ModuleList( |
|
|
[ |
|
|
OmniGen2TransformerBlock( |
|
|
hidden_size, |
|
|
num_attention_heads, |
|
|
num_kv_heads, |
|
|
multiple_of, |
|
|
ffn_dim_multiplier, |
|
|
norm_eps, |
|
|
modulation=True, |
|
|
) |
|
|
for _ in range(num_refiner_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.context_refiner = nn.ModuleList( |
|
|
[ |
|
|
OmniGen2TransformerBlock( |
|
|
hidden_size, |
|
|
num_attention_heads, |
|
|
num_kv_heads, |
|
|
multiple_of, |
|
|
ffn_dim_multiplier, |
|
|
norm_eps, |
|
|
modulation=False, |
|
|
) |
|
|
for _ in range(num_refiner_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
|
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
OmniGen2TransformerBlock( |
|
|
hidden_size, |
|
|
num_attention_heads, |
|
|
num_kv_heads, |
|
|
multiple_of, |
|
|
ffn_dim_multiplier, |
|
|
norm_eps, |
|
|
modulation=True, |
|
|
) |
|
|
for _ in range(num_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
|
|
|
self.norm_out = LuminaLayerNormContinuous( |
|
|
embedding_dim=hidden_size, |
|
|
conditioning_embedding_dim=min(hidden_size, 1024), |
|
|
elementwise_affine=False, |
|
|
eps=1e-6, |
|
|
bias=True, |
|
|
out_dim=patch_size * patch_size * self.out_channels, |
|
|
) |
|
|
|
|
|
|
|
|
self.image_index_embedding = nn.Parameter( |
|
|
torch.randn(5, hidden_size) |
|
|
) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.initialize_weights() |
|
|
|
|
|
|
|
|
self.enable_teacache = False |
|
|
self.teacache_rel_l1_thresh = 0.05 |
|
|
self.teacache_params = TeaCacheParams() |
|
|
|
|
|
coefficients = [-5.48259225, 11.48772289, -4.47407401, 2.47730926, -0.03316487] |
|
|
self.rescale_func = np.poly1d(coefficients) |
|
|
|
|
|
def initialize_weights(self) -> None: |
|
|
""" |
|
|
Initialize the weights of the model. |
|
|
|
|
|
Uses Xavier uniform initialization for linear layers. |
|
|
""" |
|
|
nn.init.xavier_uniform_(self.x_embedder.weight) |
|
|
nn.init.constant_(self.x_embedder.bias, 0.0) |
|
|
|
|
|
nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight) |
|
|
nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0) |
|
|
|
|
|
nn.init.zeros_(self.norm_out.linear_1.weight) |
|
|
nn.init.zeros_(self.norm_out.linear_1.bias) |
|
|
nn.init.zeros_(self.norm_out.linear_2.weight) |
|
|
nn.init.zeros_(self.norm_out.linear_2.bias) |
|
|
|
|
|
nn.init.normal_(self.image_index_embedding, std=0.02) |
|
|
|
|
|
def img_patch_embed_and_refine( |
|
|
self, |
|
|
hidden_states, |
|
|
ref_image_hidden_states, |
|
|
padded_img_mask, |
|
|
padded_ref_img_mask, |
|
|
noise_rotary_emb, |
|
|
ref_img_rotary_emb, |
|
|
l_effective_ref_img_len, |
|
|
l_effective_img_len, |
|
|
temb, |
|
|
): |
|
|
batch_size = len(hidden_states) |
|
|
if isinstance(l_effective_img_len[0], list): |
|
|
l_effective_img_len_summed = [sum(ln) for ln in l_effective_img_len] |
|
|
else: |
|
|
l_effective_img_len_summed = l_effective_img_len |
|
|
max_combined_img_len = max( |
|
|
[ |
|
|
img_len + sum(ref_img_len) |
|
|
for img_len, ref_img_len in zip( |
|
|
l_effective_img_len_summed, l_effective_ref_img_len |
|
|
) |
|
|
] |
|
|
) |
|
|
|
|
|
hidden_states = self.x_embedder(hidden_states) |
|
|
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states) |
|
|
|
|
|
for i in range(batch_size): |
|
|
shift = 0 |
|
|
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]): |
|
|
ref_image_hidden_states[i, shift : shift + ref_img_len, :] = ( |
|
|
ref_image_hidden_states[i, shift : shift + ref_img_len, :] |
|
|
+ self.image_index_embedding[j] |
|
|
) |
|
|
shift += ref_img_len |
|
|
|
|
|
for layer in self.noise_refiner: |
|
|
hidden_states = layer( |
|
|
hidden_states, padded_img_mask, noise_rotary_emb, temb |
|
|
) |
|
|
|
|
|
flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len)) |
|
|
num_ref_images = len(flat_l_effective_ref_img_len) |
|
|
max_ref_img_len = max(flat_l_effective_ref_img_len) |
|
|
|
|
|
batch_ref_img_mask = ref_image_hidden_states.new_zeros( |
|
|
num_ref_images, max_ref_img_len, dtype=torch.bool |
|
|
) |
|
|
batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros( |
|
|
num_ref_images, max_ref_img_len, self.config.hidden_size |
|
|
) |
|
|
batch_ref_img_rotary_emb = hidden_states.new_zeros( |
|
|
num_ref_images, |
|
|
max_ref_img_len, |
|
|
ref_img_rotary_emb.shape[-1], |
|
|
dtype=ref_img_rotary_emb.dtype, |
|
|
) |
|
|
batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype) |
|
|
|
|
|
|
|
|
idx = 0 |
|
|
for i in range(batch_size): |
|
|
shift = 0 |
|
|
for ref_img_len in l_effective_ref_img_len[i]: |
|
|
batch_ref_img_mask[idx, :ref_img_len] = True |
|
|
batch_ref_image_hidden_states[idx, :ref_img_len] = ( |
|
|
ref_image_hidden_states[i, shift : shift + ref_img_len] |
|
|
) |
|
|
batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[ |
|
|
i, shift : shift + ref_img_len |
|
|
] |
|
|
batch_temb[idx] = temb[i] |
|
|
shift += ref_img_len |
|
|
idx += 1 |
|
|
|
|
|
|
|
|
for layer in self.ref_image_refiner: |
|
|
batch_ref_image_hidden_states = layer( |
|
|
batch_ref_image_hidden_states, |
|
|
batch_ref_img_mask, |
|
|
batch_ref_img_rotary_emb, |
|
|
batch_temb, |
|
|
) |
|
|
|
|
|
|
|
|
idx = 0 |
|
|
for i in range(batch_size): |
|
|
shift = 0 |
|
|
for ref_img_len in l_effective_ref_img_len[i]: |
|
|
ref_image_hidden_states[i, shift : shift + ref_img_len] = ( |
|
|
batch_ref_image_hidden_states[idx, :ref_img_len] |
|
|
) |
|
|
shift += ref_img_len |
|
|
idx += 1 |
|
|
|
|
|
combined_img_hidden_states = hidden_states.new_zeros( |
|
|
batch_size, max_combined_img_len, self.config.hidden_size |
|
|
) |
|
|
for i, (ref_img_len, img_len) in enumerate( |
|
|
zip(l_effective_ref_img_len, l_effective_img_len_summed) |
|
|
): |
|
|
combined_img_hidden_states[i, : sum(ref_img_len)] = ref_image_hidden_states[ |
|
|
i, : sum(ref_img_len) |
|
|
] |
|
|
combined_img_hidden_states[ |
|
|
i, sum(ref_img_len) : sum(ref_img_len) + img_len |
|
|
] = hidden_states[i, :img_len] |
|
|
|
|
|
return combined_img_hidden_states |
|
|
|
|
|
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states): |
|
|
batch_size = len(hidden_states) |
|
|
p = self.config.patch_size |
|
|
device = hidden_states[0].device |
|
|
|
|
|
if len(hidden_states[0].shape) == 3: |
|
|
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] |
|
|
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes] |
|
|
else: |
|
|
img_sizes = [ |
|
|
[(img.size(1), img.size(2)) for img in imgs] for imgs in hidden_states |
|
|
] |
|
|
l_effective_img_len = [ |
|
|
[(H // p) * (W // p) for (H, W) in _img_sizes] |
|
|
for _img_sizes in img_sizes |
|
|
] |
|
|
|
|
|
if ref_image_hidden_states is not None: |
|
|
ref_img_sizes = [ |
|
|
[(img.size(1), img.size(2)) for img in imgs] |
|
|
if imgs is not None |
|
|
else None |
|
|
for imgs in ref_image_hidden_states |
|
|
] |
|
|
l_effective_ref_img_len = [ |
|
|
[ |
|
|
(ref_img_size[0] // p) * (ref_img_size[1] // p) |
|
|
for ref_img_size in _ref_img_sizes |
|
|
] |
|
|
if _ref_img_sizes is not None |
|
|
else [0] |
|
|
for _ref_img_sizes in ref_img_sizes |
|
|
] |
|
|
else: |
|
|
ref_img_sizes = [None for _ in range(batch_size)] |
|
|
l_effective_ref_img_len = [[0] for _ in range(batch_size)] |
|
|
|
|
|
max_ref_img_len = max( |
|
|
[sum(ref_img_len) for ref_img_len in l_effective_ref_img_len] |
|
|
) |
|
|
if len(hidden_states[0].shape) == 4: |
|
|
max_img_len = max([sum(img_len) for img_len in l_effective_img_len]) |
|
|
else: |
|
|
max_img_len = max(l_effective_img_len) |
|
|
|
|
|
|
|
|
flat_ref_img_hidden_states = [] |
|
|
for i in range(batch_size): |
|
|
if ref_img_sizes[i] is not None: |
|
|
imgs = [] |
|
|
for ref_img in ref_image_hidden_states[i]: |
|
|
C, H, W = ref_img.size() |
|
|
ref_img = rearrange( |
|
|
ref_img, "c (h p1) (w p2) -> (h w) (p1 p2 c)", p1=p, p2=p |
|
|
) |
|
|
imgs.append(ref_img) |
|
|
|
|
|
img = torch.cat(imgs, dim=0) |
|
|
flat_ref_img_hidden_states.append(img) |
|
|
else: |
|
|
flat_ref_img_hidden_states.append(None) |
|
|
|
|
|
|
|
|
flat_hidden_states = [] |
|
|
if len(hidden_states[0].shape) == 4: |
|
|
for i in range(batch_size): |
|
|
|
|
|
batch_img_patches = [] |
|
|
for img in hidden_states[i]: |
|
|
C, H, W = img.size() |
|
|
img = rearrange( |
|
|
img, "c (h p1) (w p2) -> (h w) (p1 p2 c)", p1=p, p2=p |
|
|
) |
|
|
batch_img_patches.append(img) |
|
|
|
|
|
flat_hidden_states.append(torch.cat(batch_img_patches, dim=0)) |
|
|
else: |
|
|
for i in range(batch_size): |
|
|
img = hidden_states[i] |
|
|
C, H, W = img.size() |
|
|
|
|
|
img = rearrange(img, "c (h p1) (w p2) -> (h w) (p1 p2 c)", p1=p, p2=p) |
|
|
flat_hidden_states.append(img) |
|
|
|
|
|
padded_ref_img_hidden_states = torch.zeros( |
|
|
batch_size, |
|
|
max_ref_img_len, |
|
|
flat_hidden_states[0].shape[-1], |
|
|
device=device, |
|
|
dtype=flat_hidden_states[0].dtype, |
|
|
) |
|
|
padded_ref_img_mask = torch.zeros( |
|
|
batch_size, max_ref_img_len, dtype=torch.bool, device=device |
|
|
) |
|
|
for i in range(batch_size): |
|
|
if ref_img_sizes[i] is not None: |
|
|
padded_ref_img_hidden_states[i, : sum(l_effective_ref_img_len[i])] = ( |
|
|
flat_ref_img_hidden_states[i] |
|
|
) |
|
|
padded_ref_img_mask[i, : sum(l_effective_ref_img_len[i])] = True |
|
|
|
|
|
padded_hidden_states = torch.zeros( |
|
|
batch_size, |
|
|
max_img_len, |
|
|
flat_hidden_states[0].shape[-1], |
|
|
device=device, |
|
|
dtype=flat_hidden_states[0].dtype, |
|
|
) |
|
|
padded_img_mask = torch.zeros( |
|
|
batch_size, max_img_len, dtype=torch.bool, device=device |
|
|
) |
|
|
for i in range(batch_size): |
|
|
if len(hidden_states[0].shape) == 4: |
|
|
padded_hidden_states[i, : sum(l_effective_img_len[i])] = ( |
|
|
flat_hidden_states[i] |
|
|
) |
|
|
padded_img_mask[i, : sum(l_effective_img_len[i])] = True |
|
|
else: |
|
|
padded_hidden_states[i, : l_effective_img_len[i]] = flat_hidden_states[ |
|
|
i |
|
|
] |
|
|
padded_img_mask[i, : l_effective_img_len[i]] = True |
|
|
|
|
|
return ( |
|
|
padded_hidden_states, |
|
|
padded_ref_img_hidden_states, |
|
|
padded_img_mask, |
|
|
padded_ref_img_mask, |
|
|
l_effective_ref_img_len, |
|
|
l_effective_img_len, |
|
|
ref_img_sizes, |
|
|
img_sizes, |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: Union[torch.Tensor, List[torch.Tensor]], |
|
|
timestep: torch.Tensor, |
|
|
text_hidden_states: torch.Tensor, |
|
|
freqs_cis: torch.Tensor, |
|
|
text_attention_mask: torch.Tensor, |
|
|
ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None, |
|
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
|
return_dict: bool = False, |
|
|
) -> Union[torch.Tensor, Transformer2DModelOutput]: |
|
|
enable_taylorseer = getattr(self, "enable_taylorseer", False) |
|
|
if enable_taylorseer: |
|
|
cal_type(self.cache_dic, self.current) |
|
|
|
|
|
if attention_kwargs is not None: |
|
|
attention_kwargs = attention_kwargs.copy() |
|
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
|
else: |
|
|
lora_scale = 1.0 |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
else: |
|
|
if ( |
|
|
attention_kwargs is not None |
|
|
and attention_kwargs.get("scale", None) is not None |
|
|
): |
|
|
logger.warning( |
|
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
|
) |
|
|
|
|
|
|
|
|
batch_size = len(hidden_states) |
|
|
is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor) |
|
|
|
|
|
if is_hidden_states_tensor: |
|
|
assert hidden_states.ndim == 4 |
|
|
hidden_states = [_hidden_states for _hidden_states in hidden_states] |
|
|
|
|
|
device = hidden_states[0].device |
|
|
|
|
|
temb, text_hidden_states = self.time_caption_embed( |
|
|
timestep, text_hidden_states, hidden_states[0].dtype |
|
|
) |
|
|
|
|
|
( |
|
|
hidden_states, |
|
|
ref_image_hidden_states, |
|
|
img_mask, |
|
|
ref_img_mask, |
|
|
l_effective_ref_img_len, |
|
|
l_effective_img_len, |
|
|
ref_img_sizes, |
|
|
img_sizes, |
|
|
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states) |
|
|
|
|
|
( |
|
|
context_rotary_emb, |
|
|
ref_img_rotary_emb, |
|
|
noise_rotary_emb, |
|
|
rotary_emb, |
|
|
encoder_seq_lengths, |
|
|
seq_lengths, |
|
|
) = self.rope_embedder( |
|
|
freqs_cis, |
|
|
text_attention_mask, |
|
|
l_effective_ref_img_len, |
|
|
l_effective_img_len, |
|
|
ref_img_sizes, |
|
|
img_sizes, |
|
|
device, |
|
|
) |
|
|
|
|
|
|
|
|
for layer in self.context_refiner: |
|
|
text_hidden_states = layer( |
|
|
text_hidden_states, text_attention_mask, context_rotary_emb |
|
|
) |
|
|
|
|
|
combined_img_hidden_states = self.img_patch_embed_and_refine( |
|
|
hidden_states, |
|
|
ref_image_hidden_states, |
|
|
img_mask, |
|
|
ref_img_mask, |
|
|
noise_rotary_emb, |
|
|
ref_img_rotary_emb, |
|
|
l_effective_ref_img_len, |
|
|
l_effective_img_len, |
|
|
temb, |
|
|
) |
|
|
|
|
|
|
|
|
max_seq_len = max(seq_lengths) |
|
|
|
|
|
attention_mask = hidden_states.new_zeros( |
|
|
batch_size, max_seq_len, dtype=torch.bool |
|
|
) |
|
|
joint_hidden_states = hidden_states.new_zeros( |
|
|
batch_size, max_seq_len, self.config.hidden_size |
|
|
) |
|
|
for i, (encoder_seq_len, seq_len) in enumerate( |
|
|
zip(encoder_seq_lengths, seq_lengths) |
|
|
): |
|
|
attention_mask[i, :seq_len] = True |
|
|
joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[ |
|
|
i, :encoder_seq_len |
|
|
] |
|
|
joint_hidden_states[i, encoder_seq_len:seq_len] = ( |
|
|
combined_img_hidden_states[i, : seq_len - encoder_seq_len] |
|
|
) |
|
|
|
|
|
hidden_states = joint_hidden_states |
|
|
|
|
|
if self.enable_teacache: |
|
|
teacache_hidden_states = hidden_states.clone() |
|
|
teacache_temb = temb.clone() |
|
|
modulated_inp, _, _, _ = self.layers[0].norm1( |
|
|
teacache_hidden_states, teacache_temb |
|
|
) |
|
|
if self.teacache_params.is_first_or_last_step: |
|
|
should_calc = True |
|
|
self.teacache_params.accumulated_rel_l1_distance = 0 |
|
|
else: |
|
|
self.teacache_params.accumulated_rel_l1_distance += self.rescale_func( |
|
|
( |
|
|
(modulated_inp - self.teacache_params.previous_modulated_inp) |
|
|
.abs() |
|
|
.mean() |
|
|
/ self.teacache_params.previous_modulated_inp.abs().mean() |
|
|
) |
|
|
.cpu() |
|
|
.item() |
|
|
) |
|
|
if ( |
|
|
self.teacache_params.accumulated_rel_l1_distance |
|
|
< self.teacache_rel_l1_thresh |
|
|
): |
|
|
should_calc = False |
|
|
else: |
|
|
should_calc = True |
|
|
self.teacache_params.accumulated_rel_l1_distance = 0 |
|
|
self.teacache_params.previous_modulated_inp = modulated_inp |
|
|
|
|
|
if self.enable_teacache: |
|
|
if not should_calc: |
|
|
hidden_states += self.teacache_params.previous_residual |
|
|
else: |
|
|
ori_hidden_states = hidden_states.clone() |
|
|
for layer_idx, layer in enumerate(self.layers): |
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
hidden_states = self._gradient_checkpointing_func( |
|
|
layer, hidden_states, attention_mask, rotary_emb, temb |
|
|
) |
|
|
else: |
|
|
hidden_states = layer( |
|
|
hidden_states, attention_mask, rotary_emb, temb |
|
|
) |
|
|
self.teacache_params.previous_residual = ( |
|
|
hidden_states - ori_hidden_states |
|
|
) |
|
|
else: |
|
|
if enable_taylorseer: |
|
|
self.current["stream"] = "layers_stream" |
|
|
|
|
|
for layer_idx, layer in enumerate(self.layers): |
|
|
if enable_taylorseer: |
|
|
layer.current = self.current |
|
|
layer.cache_dic = self.cache_dic |
|
|
layer.enable_taylorseer = True |
|
|
self.current["layer"] = layer_idx |
|
|
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
hidden_states = self._gradient_checkpointing_func( |
|
|
layer, hidden_states, attention_mask, rotary_emb, temb |
|
|
) |
|
|
else: |
|
|
hidden_states = layer( |
|
|
hidden_states, attention_mask, rotary_emb, temb |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
|
|
|
|
p = self.config.patch_size |
|
|
output = [] |
|
|
|
|
|
for i, (img_size, img_len, seq_len) in enumerate( |
|
|
zip(img_sizes, l_effective_img_len, seq_lengths) |
|
|
): |
|
|
if isinstance(img_len, list): |
|
|
batch_output = [] |
|
|
cur_st = seq_len - sum(img_len) |
|
|
for j in range(len(img_len)): |
|
|
height, width = img_size[j] |
|
|
cur_len = img_len[j] |
|
|
batch_output.append( |
|
|
rearrange( |
|
|
hidden_states[i][cur_st : cur_st + cur_len], |
|
|
"(h w) (p1 p2 c) -> c (h p1) (w p2)", |
|
|
h=height // p, |
|
|
w=width // p, |
|
|
p1=p, |
|
|
p2=p, |
|
|
) |
|
|
) |
|
|
cur_st += cur_len |
|
|
output.append(torch.stack(batch_output, dim=0)) |
|
|
|
|
|
else: |
|
|
height, width = img_size |
|
|
output.append( |
|
|
rearrange( |
|
|
hidden_states[i][seq_len - img_len : seq_len], |
|
|
"(h w) (p1 p2 c) -> c (h p1) (w p2)", |
|
|
h=height // p, |
|
|
w=width // p, |
|
|
p1=p, |
|
|
p2=p, |
|
|
) |
|
|
) |
|
|
if is_hidden_states_tensor: |
|
|
output = torch.stack(output, dim=0) |
|
|
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
|
|
if enable_taylorseer: |
|
|
self.current["step"] += 1 |
|
|
|
|
|
if not return_dict: |
|
|
return output |
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|