Update README.md
Browse files
README.md
CHANGED
|
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 35 |
-
It achieves an average score of
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
@@ -129,6 +129,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
| 129 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 130 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
| 131 |
|
|
|
|
|
|
|
| 132 |
### Accuracy
|
| 133 |
|
| 134 |
#### Open LLM Leaderboard evaluation scores
|
|
@@ -146,29 +148,29 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 146 |
<tr>
|
| 147 |
<td>MMLU (5-shot)
|
| 148 |
</td>
|
| 149 |
-
<td>
|
| 150 |
</td>
|
| 151 |
-
<td>
|
| 152 |
</td>
|
| 153 |
-
<td>97.
|
| 154 |
</td>
|
| 155 |
</tr>
|
| 156 |
<tr>
|
| 157 |
<td>MMLU (CoT, 0-shot)
|
| 158 |
</td>
|
| 159 |
-
<td>72.
|
| 160 |
</td>
|
| 161 |
-
<td>
|
| 162 |
</td>
|
| 163 |
-
<td>97.
|
| 164 |
</td>
|
| 165 |
</tr>
|
| 166 |
<tr>
|
| 167 |
<td>ARC Challenge (0-shot)
|
| 168 |
</td>
|
| 169 |
-
<td>81.
|
| 170 |
</td>
|
| 171 |
-
<td>
|
| 172 |
</td>
|
| 173 |
<td>98.0%
|
| 174 |
</td>
|
|
@@ -178,49 +180,49 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
| 178 |
</td>
|
| 179 |
<td>82.79
|
| 180 |
</td>
|
| 181 |
-
<td>
|
| 182 |
</td>
|
| 183 |
-
<td>
|
| 184 |
</td>
|
| 185 |
</tr>
|
| 186 |
<tr>
|
| 187 |
<td>Hellaswag (10-shot)
|
| 188 |
</td>
|
| 189 |
-
<td>80.
|
| 190 |
</td>
|
| 191 |
-
<td>78.
|
| 192 |
</td>
|
| 193 |
-
<td>
|
| 194 |
</td>
|
| 195 |
</tr>
|
| 196 |
<tr>
|
| 197 |
<td>Winogrande (5-shot)
|
| 198 |
</td>
|
| 199 |
-
<td>
|
| 200 |
</td>
|
| 201 |
-
<td>76.
|
| 202 |
</td>
|
| 203 |
-
<td>
|
| 204 |
</td>
|
| 205 |
</tr>
|
| 206 |
<tr>
|
| 207 |
<td>TruthfulQA (0-shot, mc2)
|
| 208 |
</td>
|
| 209 |
-
<td>54.
|
| 210 |
</td>
|
| 211 |
<td>50.46
|
| 212 |
</td>
|
| 213 |
-
<td>
|
| 214 |
</td>
|
| 215 |
</tr>
|
| 216 |
<tr>
|
| 217 |
<td><strong>Average</strong>
|
| 218 |
</td>
|
| 219 |
-
<td><strong>74.
|
| 220 |
</td>
|
| 221 |
-
<td><strong>
|
| 222 |
</td>
|
| 223 |
-
<td><strong>97.
|
| 224 |
</td>
|
| 225 |
</tr>
|
| 226 |
</table>
|
|
@@ -233,7 +235,7 @@ The results were obtained using the following commands:
|
|
| 233 |
```
|
| 234 |
lm_eval \
|
| 235 |
--model vllm \
|
| 236 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
| 237 |
--tasks mmlu_llama_3.1_instruct \
|
| 238 |
--fewshot_as_multiturn \
|
| 239 |
--apply_chat_template \
|
|
@@ -245,7 +247,7 @@ lm_eval \
|
|
| 245 |
```
|
| 246 |
lm_eval \
|
| 247 |
--model vllm \
|
| 248 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
| 249 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 250 |
--apply_chat_template \
|
| 251 |
--num_fewshot 0 \
|
|
@@ -256,7 +258,7 @@ lm_eval \
|
|
| 256 |
```
|
| 257 |
lm_eval \
|
| 258 |
--model vllm \
|
| 259 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
| 260 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 261 |
--apply_chat_template \
|
| 262 |
--num_fewshot 0 \
|
|
@@ -267,7 +269,7 @@ lm_eval \
|
|
| 267 |
```
|
| 268 |
lm_eval \
|
| 269 |
--model vllm \
|
| 270 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
| 271 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 272 |
--fewshot_as_multiturn \
|
| 273 |
--apply_chat_template \
|
|
|
|
| 32 |
- **Model Developers:** Neural Magic
|
| 33 |
|
| 34 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
| 35 |
+
It achieves an average score of 72.58 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 74.25.
|
| 36 |
|
| 37 |
### Model Optimizations
|
| 38 |
|
|
|
|
| 129 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
| 130 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
| 131 |
|
| 132 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
| 133 |
+
|
| 134 |
### Accuracy
|
| 135 |
|
| 136 |
#### Open LLM Leaderboard evaluation scores
|
|
|
|
| 148 |
<tr>
|
| 149 |
<td>MMLU (5-shot)
|
| 150 |
</td>
|
| 151 |
+
<td>68.32
|
| 152 |
</td>
|
| 153 |
+
<td>66.89
|
| 154 |
</td>
|
| 155 |
+
<td>97.9%
|
| 156 |
</td>
|
| 157 |
</tr>
|
| 158 |
<tr>
|
| 159 |
<td>MMLU (CoT, 0-shot)
|
| 160 |
</td>
|
| 161 |
+
<td>72.83
|
| 162 |
</td>
|
| 163 |
+
<td>71.06
|
| 164 |
</td>
|
| 165 |
+
<td>97.6%
|
| 166 |
</td>
|
| 167 |
</tr>
|
| 168 |
<tr>
|
| 169 |
<td>ARC Challenge (0-shot)
|
| 170 |
</td>
|
| 171 |
+
<td>81.40
|
| 172 |
</td>
|
| 173 |
+
<td>80.20
|
| 174 |
</td>
|
| 175 |
<td>98.0%
|
| 176 |
</td>
|
|
|
|
| 180 |
</td>
|
| 181 |
<td>82.79
|
| 182 |
</td>
|
| 183 |
+
<td>82.94
|
| 184 |
</td>
|
| 185 |
+
<td>100.2%
|
| 186 |
</td>
|
| 187 |
</tr>
|
| 188 |
<tr>
|
| 189 |
<td>Hellaswag (10-shot)
|
| 190 |
</td>
|
| 191 |
+
<td>80.47
|
| 192 |
</td>
|
| 193 |
+
<td>78.59
|
| 194 |
</td>
|
| 195 |
+
<td>97.7%
|
| 196 |
</td>
|
| 197 |
</tr>
|
| 198 |
<tr>
|
| 199 |
<td>Winogrande (5-shot)
|
| 200 |
</td>
|
| 201 |
+
<td>78.06
|
| 202 |
</td>
|
| 203 |
+
<td>76.40
|
| 204 |
</td>
|
| 205 |
+
<td>97.9%
|
| 206 |
</td>
|
| 207 |
</tr>
|
| 208 |
<tr>
|
| 209 |
<td>TruthfulQA (0-shot, mc2)
|
| 210 |
</td>
|
| 211 |
+
<td>54.48
|
| 212 |
</td>
|
| 213 |
<td>50.46
|
| 214 |
</td>
|
| 215 |
+
<td>92.6%
|
| 216 |
</td>
|
| 217 |
</tr>
|
| 218 |
<tr>
|
| 219 |
<td><strong>Average</strong>
|
| 220 |
</td>
|
| 221 |
+
<td><strong>74.25</strong>
|
| 222 |
</td>
|
| 223 |
+
<td><strong>72.58</strong>
|
| 224 |
</td>
|
| 225 |
+
<td><strong>97.7%</strong>
|
| 226 |
</td>
|
| 227 |
</tr>
|
| 228 |
</table>
|
|
|
|
| 235 |
```
|
| 236 |
lm_eval \
|
| 237 |
--model vllm \
|
| 238 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
| 239 |
--tasks mmlu_llama_3.1_instruct \
|
| 240 |
--fewshot_as_multiturn \
|
| 241 |
--apply_chat_template \
|
|
|
|
| 247 |
```
|
| 248 |
lm_eval \
|
| 249 |
--model vllm \
|
| 250 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 251 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
| 252 |
--apply_chat_template \
|
| 253 |
--num_fewshot 0 \
|
|
|
|
| 258 |
```
|
| 259 |
lm_eval \
|
| 260 |
--model vllm \
|
| 261 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
| 262 |
--tasks arc_challenge_llama_3.1_instruct \
|
| 263 |
--apply_chat_template \
|
| 264 |
--num_fewshot 0 \
|
|
|
|
| 269 |
```
|
| 270 |
lm_eval \
|
| 271 |
--model vllm \
|
| 272 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
| 273 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
| 274 |
--fewshot_as_multiturn \
|
| 275 |
--apply_chat_template \
|