File size: 14,874 Bytes
5154f51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from typing import Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
from ...video_utils import VideoInput
logger = logging.get_logger(__name__)
class PrismaVLProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_token_type_ids": False,
"return_mm_token_type_ids": False,
},
"videos_kwargs": {"return_metadata": True},
}
class PrismaVLProcessor(ProcessorMixin):
r"""
Constructs a PrismaVL processor which wraps a PrismaVL image processor and a Qwen2 tokenizer into a single processor.
[`PrismaVLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
[`~PrismaVLProcessor.__call__`] and [`~PrismaVLProcessor.decode`] for more information.
Args:
image_processor ([`Qwen2VLImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`Qwen2TokenizerFast`], *optional*):
The tokenizer is a required input.
video_processor ([`PrismaVLVideoProcessor`], *optional*):
The video processor is a required input.
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
self.image_token_id = (
tokenizer.image_token_id
if getattr(tokenizer, "image_token_id", None)
else tokenizer.convert_tokens_to_ids(self.image_token)
)
self.video_token_id = (
tokenizer.video_token_id
if getattr(tokenizer, "video_token_id", None)
else tokenizer.convert_tokens_to_ids(self.video_token)
)
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
self.vision_start_token = (
"<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token
)
self.vision_end_token = (
"<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token
)
self.vision_start_token_id = (
tokenizer.vision_start_token_id
if getattr(tokenizer, "vision_start_token_id", None)
else tokenizer.convert_tokens_to_ids(self.vision_start_token)
)
self.vision_end_token_id = (
tokenizer.vision_end_token_id
if getattr(tokenizer, "vision_end_token_id", None)
else tokenizer.convert_tokens_to_ids(self.vision_end_token)
)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[PrismaVLProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `list[str]`, `list[list[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
"""
output_kwargs = self._merge_kwargs(
PrismaVLProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if images is not None:
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
image_grid_thw = image_inputs["image_grid_thw"]
else:
image_inputs = {}
image_grid_thw = None
if videos is not None:
videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
video_grid_thw = videos_inputs["video_grid_thw"]
# If user has not requested video metadata, pop it
if "return_metadata" not in kwargs:
video_metadata = videos_inputs.pop("video_metadata")
else:
video_metadata = videos_inputs["video_metadata"]
else:
videos_inputs = {}
video_grid_thw = None
if not isinstance(text, list):
text = [text]
text = text.copy() # below lines change text in-place
if image_grid_thw is not None:
merge_length = self.image_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.image_token in text[i]:
num_image_tokens = image_grid_thw[index].prod() // merge_length
text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.image_token)
if video_grid_thw is not None:
merge_length = self.video_processor.merge_size**2
index = 0
for i in range(len(text)):
while self.video_token in text[i]:
metadata = video_metadata[index]
if metadata.fps is None:
logger.warning_once(
"PrismaVL requires frame timestamps to construct prompts, but the `fps` of the input video could not be inferred. "
"Probably `video_metadata` was missing from inputs and you passed pre-sampled frames. "
"Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results."
)
metadata.fps = 24 if metadata.fps is None else metadata.fps
# if timestamps are not provided, calculate them
curr_timestamp = self._calculate_timestamps(
metadata.frames_indices,
metadata.fps,
self.video_processor.merge_size,
)
video_placeholder = ""
frame_seqlen = video_grid_thw[index][1:].prod() // merge_length
for frame_idx in range(video_grid_thw[index][0]):
curr_time = curr_timestamp[frame_idx]
video_placeholder += f"<{curr_time:.1f} seconds>"
video_placeholder += (
self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token
)
if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text[i]:
text[i] = text[i].replace(
f"{self.vision_start_token}{self.video_token}{self.vision_end_token}", video_placeholder, 1
)
else:
# vllm may input video token directly
text[i] = text[i].replace(self.video_token, video_placeholder, 1)
index += 1
text[i] = text[i].replace("<|placeholder|>", self.video_token)
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
video_sizes (`list[list[int]]`, *optional*):
The input sizes formatted as (num_frames, height, width) per each video.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = PrismaVLProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size
num_image_patches = [
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
for image_size in image_sizes
]
num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
if video_sizes is not None:
videos_kwargs = PrismaVLProcessorKwargs._defaults.get("videos_kwargs", {})
videos_kwargs.update(kwargs)
num_video_patches = [
self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs)
for video_size in video_sizes
]
num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches]
vision_data["num_video_tokens"] = num_video_tokens
return MultiModalData(**vision_data)
def post_process_image_text_to_text(
self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
skip_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
**kwargs:
Additional arguments to be passed to the tokenizer's `batch_decode method`.
Returns:
`list[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs,
skip_special_tokens=skip_special_tokens,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
def _calculate_timestamps(self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2):
if not isinstance(indices, list):
indices = indices.tolist()
if len(indices) % merge_size != 0:
indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size))
timestamps = [idx / video_fps for idx in indices]
# @JJJYmmm frames are merged by self.merge_size, \
# so we need to average the timestamps between the first/last frame within the temporal patch
timestamps = [
(timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size)
]
return timestamps
__all__ = ["PrismaVLProcessor"]
|