File size: 14,874 Bytes
5154f51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from typing import Union

import numpy as np

from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
from ...video_utils import VideoInput


logger = logging.get_logger(__name__)


class PrismaVLProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {
            "padding": False,
            "return_token_type_ids": False,
            "return_mm_token_type_ids": False,
        },
        "videos_kwargs": {"return_metadata": True},
    }


class PrismaVLProcessor(ProcessorMixin):
    r"""
    Constructs a PrismaVL processor which wraps a PrismaVL image processor and a Qwen2 tokenizer into a single processor.
    [`PrismaVLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
    [`~PrismaVLProcessor.__call__`] and [`~PrismaVLProcessor.decode`] for more information.
    Args:
        image_processor ([`Qwen2VLImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`Qwen2TokenizerFast`], *optional*):
            The tokenizer is a required input.
        video_processor ([`PrismaVLVideoProcessor`], *optional*):
            The video processor is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
        self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
        self.image_token_id = (
            tokenizer.image_token_id
            if getattr(tokenizer, "image_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.image_token)
        )
        self.video_token_id = (
            tokenizer.video_token_id
            if getattr(tokenizer, "video_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.video_token)
        )
        super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
        self.vision_start_token = (
            "<|vision_start|>" if not hasattr(tokenizer, "vision_start_token") else tokenizer.vision_start_token
        )
        self.vision_end_token = (
            "<|vision_end|>" if not hasattr(tokenizer, "vision_end_token") else tokenizer.vision_end_token
        )
        self.vision_start_token_id = (
            tokenizer.vision_start_token_id
            if getattr(tokenizer, "vision_start_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.vision_start_token)
        )
        self.vision_end_token_id = (
            tokenizer.vision_end_token_id
            if getattr(tokenizer, "vision_end_token_id", None)
            else tokenizer.convert_tokens_to_ids(self.vision_end_token)
        )

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
        videos: VideoInput = None,
        **kwargs: Unpack[PrismaVLProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            PrismaVLProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        if videos is not None:
            videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
            video_grid_thw = videos_inputs["video_grid_thw"]
            # If user has not requested video metadata, pop it
            if "return_metadata" not in kwargs:
                video_metadata = videos_inputs.pop("video_metadata")
            else:
                video_metadata = videos_inputs["video_metadata"]
        else:
            videos_inputs = {}
            video_grid_thw = None

        if not isinstance(text, list):
            text = [text]

        text = text.copy()  # below lines change text in-place
        if image_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    num_image_tokens = image_grid_thw[index].prod() // merge_length
                    text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        if video_grid_thw is not None:
            merge_length = self.video_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.video_token in text[i]:
                    metadata = video_metadata[index]
                    if metadata.fps is None:
                        logger.warning_once(
                            "PrismaVL requires frame timestamps to construct prompts, but the `fps` of the input video could not be inferred. "
                            "Probably `video_metadata` was missing from inputs and you passed pre-sampled frames. "
                            "Defaulting to `fps=24`. Please provide `video_metadata` for more accurate results."
                        )
                        metadata.fps = 24 if metadata.fps is None else metadata.fps

                    # if timestamps are not provided, calculate them
                    curr_timestamp = self._calculate_timestamps(
                        metadata.frames_indices,
                        metadata.fps,
                        self.video_processor.merge_size,
                    )

                    video_placeholder = ""
                    frame_seqlen = video_grid_thw[index][1:].prod() // merge_length
                    for frame_idx in range(video_grid_thw[index][0]):
                        curr_time = curr_timestamp[frame_idx]
                        video_placeholder += f"<{curr_time:.1f} seconds>"
                        video_placeholder += (
                            self.vision_start_token + "<|placeholder|>" * frame_seqlen + self.vision_end_token
                        )
                    if f"{self.vision_start_token}{self.video_token}{self.vision_end_token}" in text[i]:
                        text[i] = text[i].replace(
                            f"{self.vision_start_token}{self.video_token}{self.vision_end_token}", video_placeholder, 1
                        )
                    else:
                        # vllm may input video token directly
                        text[i] = text[i].replace(self.video_token, video_placeholder, 1)
                    index += 1

                text[i] = text[i].replace("<|placeholder|>", self.video_token)

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
        return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
        self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"])

        if return_mm_token_type_ids:
            array_ids = np.array(text_inputs["input_ids"])
            mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
            mm_token_type_ids[array_ids == self.image_token_id] = 1
            text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()

        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)

    def _get_num_multimodal_tokens(self, image_sizes=None, video_sizes=None, **kwargs):
        """
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.
            video_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (num_frames, height, width) per each video.
        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        """

        vision_data = {}
        if image_sizes is not None:
            images_kwargs = PrismaVLProcessorKwargs._defaults.get("images_kwargs", {})
            images_kwargs.update(kwargs)
            merge_size = images_kwargs.get("merge_size", None) or self.image_processor.merge_size

            num_image_patches = [
                self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
                for image_size in image_sizes
            ]
            num_image_tokens = [(num_patches // merge_size**2) for num_patches in num_image_patches]
            vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})

        if video_sizes is not None:
            videos_kwargs = PrismaVLProcessorKwargs._defaults.get("videos_kwargs", {})
            videos_kwargs.update(kwargs)
            num_video_patches = [
                self.video_processor.get_number_of_video_patches(*video_size, videos_kwargs)
                for video_size in video_sizes
            ]
            num_video_tokens = [(num_patches // merge_size**2) for num_patches in num_video_patches]
            vision_data["num_video_tokens"] = num_video_tokens

        return MultiModalData(**vision_data)

    def post_process_image_text_to_text(
        self, generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False, **kwargs
    ):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
            clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
                Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
            **kwargs:
                Additional arguments to be passed to the tokenizer's `batch_decode method`.

        Returns:
            `list[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    def _calculate_timestamps(self, indices: Union[list[int], np.ndarray], video_fps: float, merge_size: int = 2):
        if not isinstance(indices, list):
            indices = indices.tolist()
        if len(indices) % merge_size != 0:
            indices.extend(indices[-1] for _ in range(merge_size - len(indices) % merge_size))
        timestamps = [idx / video_fps for idx in indices]
        # @JJJYmmm frames are merged by self.merge_size, \
        # so we need to average the timestamps between the first/last frame within the temporal patch
        timestamps = [
            (timestamps[i] + timestamps[i + merge_size - 1]) / 2 for i in range(0, len(timestamps), merge_size)
        ]
        return timestamps


__all__ = ["PrismaVLProcessor"]