--- language: - en library_name: mlx tags: - glm - MOE - pruning - compression - mlx license: mit name: cerebras/GLM-4.5-Air-REAP-82B-A12B description: 'This model was obtained by uniformly pruning 25% of experts in GLM-4.5-Air using the REAP method. ' readme: 'https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B/main/README.md ' license_link: https://huggingface.co/zai-org/GLM-4.5-Air/blob/main/LICENSE pipeline_tag: text-generation base_model: cerebras/GLM-4.5-Air-REAP-82B-A12B --- # NexVeridian/GLM-4.5-Air-REAP-82B-A12B-8bit This model [NexVeridian/GLM-4.5-Air-REAP-82B-A12B-8bit](https://huggingface.co/NexVeridian/GLM-4.5-Air-REAP-82B-A12B-8bit) was converted to MLX format from [cerebras/GLM-4.5-Air-REAP-82B-A12B](https://huggingface.co/cerebras/GLM-4.5-Air-REAP-82B-A12B) using mlx-lm version **0.28.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/GLM-4.5-Air-REAP-82B-A12B-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```