Lefei nielsr HF Staff commited on
Commit
2de5c05
·
verified ·
1 Parent(s): bb5e4b2

Improve model card: Add pipeline tag, description, links, and citation for VisionTS++ (#1)

Browse files

- Improve model card: Add pipeline tag, description, links, and citation for VisionTS++ (e76c5d8be9630e6c0c99af50fdd2e8aa2f3e6b14)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +76 -3
README.md CHANGED
@@ -1,3 +1,76 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: time-series-forecasting
4
+ ---
5
+
6
+ # VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Visual Backbones
7
+
8
+ This repository hosts the **VisionTS++** model, a state-of-the-art time series foundation model based on continual pre-training of a visual Masked AutoEncoder (MAE) on large-scale time series data. It excels in multivariate and probabilistic time series forecasting by bridging modality gaps between vision and time series data.
9
+
10
+ The model was introduced in the paper:
11
+ [**VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Vision Backbones**](https://huggingface.co/papers/2508.04379)
12
+
13
+ Official GitHub repository: [https://github.com/HALF111/VisionTSpp](https://github.com/HALF111/VisionTSpp)
14
+
15
+ Experience **VisionTS++** directly in your browser on the [Hugging Face Space](https://huggingface.co/spaces/Lefei/VisionTSpp)! You can upload your own custom time series CSV file for zero-shot forecasting.
16
+
17
+ ## About
18
+ VisionTS++ is built upon continual pre-training of a vision model on large-scale time series, addressing key discrepancies in cross-modal transfer from vision to time series. It introduces three key innovations:
19
+
20
+ 1. **Vision-model-based filtering**: Identifies high-quality sequences to stabilize pre-training and mitigate the data-modality gap.
21
+ 2. **Colorized multivariate conversion**: Encodes multivariate series as multi-subfigure RGB images to enhance cross-variate modeling.
22
+ 3. **Multi-quantile forecasting**: Uses parallel reconstruction heads to generate quantile forecasts for probabilistic predictions without parametric assumptions.
23
+
24
+ These innovations allow VisionTS++ to achieve state-of-the-art performance in both in-distribution and out-of-distribution forecasting, demonstrating that vision models can effectively generalize to Time Series Forecasting with appropriate adaptation.
25
+
26
+ <div align="center">
27
+ <img src="https://huggingface.co/Lefei/VisionTSpp/resolve/main/figures/teaser.png" style="width:80%;" />
28
+ </div>
29
+
30
+ <div align="center">
31
+ <img src="https://huggingface.co/Lefei/VisionTSpp/resolve/main/figures/visiontspp_hf_space_ettm1.png" style="width:100%;" />
32
+ </div>
33
+
34
+ ## Installation
35
+
36
+ The VisionTS++ model is available through the `visionts` package on PyPI.
37
+
38
+ First, install the package:
39
+
40
+ ```shell
41
+ pip install visionts
42
+ ```
43
+
44
+ If you want to develop the inference code, you can also build from source:
45
+
46
+ ```shell
47
+ git clone https://github.com/HALF111/VisionTSpp.git
48
+ cd VisionTSpp
49
+ pip install -e .
50
+ ```
51
+
52
+ For detailed inference examples and usage with clear visualizations of image reconstruction, please refer to the `demo.ipynb` notebook in the [official GitHub repository](https://github.com/HALF111/VisionTSpp/blob/main/demo.ipynb).
53
+
54
+ ## Citation
55
+ If you're using VisionTS++ or VisionTS in your research or applications, please cite them using this BibTeX:
56
+
57
+ ```bibtex
58
+ @misc{chen2024visionts,
59
+ title={VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters},
60
+ author={Mouxiang Chen and Lefei Shen and Zhuo Li and Xiaoyun Joy Wang and Jianling Sun and Chenghao Liu},
61
+ year={2024},
62
+ eprint={2408.17253},
63
+ archivePrefix={arXiv},
64
+ url={https://arxiv.org/abs/2408.17253},
65
+ }
66
+
67
+ @misc{shen2025visiontspp,
68
+ title={VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Visual Backbones},
69
+ author={Lefei Shen and Mouxiang Chen and Xu Liu and Han Fu and Xiaoxue Ren and Jianling Sun and Zhuo Li and Chenghao Liu},
70
+ year={2025},
71
+ eprint={2508.04379},
72
+ archivePrefix={arXiv},
73
+ primaryClass={cs.CV},
74
+ url={https://arxiv.org/abs/2508.04379},
75
+ }
76
+ ```