Image-Text-to-Text
Transformers
Safetensors
GGUF
gemma3
any-to-any
turkish
türkiye
english
ai
lamapi
next
next-x1
efficient
text-generation
open-source
4b
huggingface
large-language-model
llm
causal
transformer
artificial-intelligence
machine-learning
ai-research
natural-language-processing
language
multilingual
multimodal
nlp
finetuned
lightweight
creative
summarization
question-answering
chat
generative-ai
optimized
unsloth
trl
sft
chemistry
code
biology
finance
legal
music
art
state-of-the-art
climate
medical
agent
text-generation-inference
Merge
dense
conversational
Update README.md
Browse files
README.md
CHANGED
|
@@ -112,21 +112,8 @@ library_name: transformers
|
|
| 112 |
### *Türkiye’s First Vision-Language Model — Efficient, Multimodal, and Reasoning-Focused*
|
| 113 |
|
| 114 |
[](https://opensource.org/licenses/MIT)
|
| 115 |
-
[:** ~12–15
|
| 125 |
-
* **Tokens/sec on 4-bit consumer GPUs:** 500–1200
|
| 126 |
-
* **Image captioning accuracy:** High fidelity for complex scenes
|
| 127 |
-
* **Multimodal reasoning:** Consistent and coherent across images and text
|
| 128 |
-
|
| 129 |
-
> Indicates competitive performance for a **4B multimodal model**, deployable on standard GPUs with **very low latency**.
|
| 130 |
|
| 131 |
---
|
| 132 |
|
|
@@ -143,6 +130,128 @@ This model is ideal for **researchers, developers, and organizations** who need
|
|
| 143 |
|
| 144 |
---
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
## 🚀 Installation & Usage
|
| 147 |
|
| 148 |
### Use with vision:
|
|
|
|
| 112 |
### *Türkiye’s First Vision-Language Model — Efficient, Multimodal, and Reasoning-Focused*
|
| 113 |
|
| 114 |
[](https://opensource.org/licenses/MIT)
|
| 115 |
+
[]()
|
| 116 |
+
[](https://huggingface.co/Lamapi/next-4b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
---
|
| 119 |
|
|
|
|
| 130 |
|
| 131 |
---
|
| 132 |
|
| 133 |
+
<style>
|
| 134 |
+
table { width:fit-content; border-collapse:separate; border-spacing:0 3px;font-family:system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;background:rgba(15,22,32,0.4);border-radius:16px;padding: 10px; border:none;transition:.2s all ease;}
|
| 135 |
+
thead th { text-align:center; padding:4px 10px; font-size:13px; text-transform:uppercase; color:rgb(200,200,200);border:none; }
|
| 136 |
+
tbody tr { transition: transform 0.18s ease, box-shadow 0.18s ease; border:none !important;transition:.2s all ease;border-radius:16px;background:rgba(0, 0, 0, 0.38);}
|
| 137 |
+
tbody .turkish:hover {box-shadow:0 6px 15px rgba(0, 0, 0, 0.27);scale:1.01;background:rgba(80, 38, 38, 0.6);}
|
| 138 |
+
tbody .next:hover {box-shadow:0 6px 15px rgba(0, 0, 0, 0.27);scale:1.02;background: rgba(0, 59, 225, 1)}
|
| 139 |
+
tbody tr:hover { box-shadow:0 0px 15px rgba(102, 102, 102, 0.13); background:rgba(139, 139, 139, 0.16)}
|
| 140 |
+
td { padding:8px 10px;border:0px transparent !important;outline:transparent !important; text-align:center; }
|
| 141 |
+
td:first-child { font-weight:600;text-align:left }
|
| 142 |
+
/* tbody .turkish td { background: rgba(255, 0, 0, 0.2) !important; color:rgb(200,200,200); font-weight:400;border:0px !important; scale:1.0; } */
|
| 143 |
+
/* tbody .next td { background: rgba(0, 89, 255, 0.49)!important; color:rgb(200,200,200); font-weight:600;border:0px !important; scale:1.00;outline:none;border:none !important;} */
|
| 144 |
+
.next{
|
| 145 |
+
background: rgba(0, 89, 255, 0.49);
|
| 146 |
+
}
|
| 147 |
+
.turkish{
|
| 148 |
+
background:rgba(51, 34, 34, 0.64);
|
| 149 |
+
}
|
| 150 |
+
tbody tr td:first-child { border-top-left-radius:12px; border-bottom-left-radius:12px; }
|
| 151 |
+
tbody tr td:last-child { border-top-right-radius:12px; border-bottom-right-radius:12px; } strong{
|
| 152 |
+
font-size:16px;font-weight:700;
|
| 153 |
+
}
|
| 154 |
+
em{opacity:0.7;font-size:11px !important;}
|
| 155 |
+
</style>
|
| 156 |
+
|
| 157 |
+
# Our Next 1B and Next 4B models are leading to all of the tiny models in benchmarks.
|
| 158 |
+
|
| 159 |
+
<table>
|
| 160 |
+
<thead>
|
| 161 |
+
<tr>
|
| 162 |
+
<th>Model</th>
|
| 163 |
+
<th>MMLU (5-shot) %</th>
|
| 164 |
+
<th>MMLU-Pro %</th>
|
| 165 |
+
<th>GSM8K %</th>
|
| 166 |
+
<th>MATH %</th>
|
| 167 |
+
</tr>
|
| 168 |
+
</thead>
|
| 169 |
+
<tbody>
|
| 170 |
+
<tr class="next">
|
| 171 |
+
<td data-label="Model">Next 4B preview <em>Version s325</em></td>
|
| 172 |
+
<td data-label="MMLU (5-shot) %">84.61</td>
|
| 173 |
+
<td data-label="MMLU-Pro %">66.92</td>
|
| 174 |
+
<td data-label="GSM8K %">82.7</td>
|
| 175 |
+
<td data-label="MATH %">70.5</td>
|
| 176 |
+
</tr>
|
| 177 |
+
<tr class="next">
|
| 178 |
+
<td data-label="Model">Next 1B <em>Version t327</em></td>
|
| 179 |
+
<td data-label="MMLU (5-shot) %"><strong>90.3</strong></td>
|
| 180 |
+
<td data-label="MMLU-Pro %"><strong>69.23</strong></td>
|
| 181 |
+
<td data-label="GSM8K %"><strong>91.53</strong></td>
|
| 182 |
+
<td data-label="MATH %"><strong>77.1</strong></td>
|
| 183 |
+
</tr>
|
| 184 |
+
<tr>
|
| 185 |
+
<td data-label="Model">Qwen 3 0.6B</td>
|
| 186 |
+
<td data-label="MMLU (5-shot) %">52.81</td>
|
| 187 |
+
<td data-label="MMLU-Pro %">37.56</td>
|
| 188 |
+
<td data-label="GSM8K %">60.65</td>
|
| 189 |
+
<td data-label="MATH %">20.5</td>
|
| 190 |
+
</tr>
|
| 191 |
+
<tr>
|
| 192 |
+
<td data-label="Model">Llama 3.2 1B</td>
|
| 193 |
+
<td data-label="MMLU (5-shot) %">49.3</td>
|
| 194 |
+
<td data-label="MMLU-Pro %">44.4</td>
|
| 195 |
+
<td data-label="GSM8K %">11.9</td>
|
| 196 |
+
<td data-label="MATH %">30.6</td>
|
| 197 |
+
</tr>
|
| 198 |
+
<tr class="turkish">
|
| 199 |
+
<td data-label="Model">Kumru 7B</td>
|
| 200 |
+
<td data-label="MMLU (5-shot) %">30.76</td>
|
| 201 |
+
<td data-label="MMLU-Pro %">28.57</td>
|
| 202 |
+
<td data-label="GSM8K %">-</td>
|
| 203 |
+
<td data-label="MATH %">-</td>
|
| 204 |
+
</tr>
|
| 205 |
+
</tbody>
|
| 206 |
+
</table>
|
| 207 |
+
|
| 208 |
+
---
|
| 209 |
+
|
| 210 |
+
# Also, our Next Z1 model is leading to state-of-the-art models in some of the Benchmarks.
|
| 211 |
+
<table>
|
| 212 |
+
<thead>
|
| 213 |
+
<tr>
|
| 214 |
+
<th>Model</th>
|
| 215 |
+
<th>MMLU (5-shot) %</th>
|
| 216 |
+
<th>MMLU-Pro %</th>
|
| 217 |
+
<th>GSM8K %</th>
|
| 218 |
+
<th>MATH %</th>
|
| 219 |
+
</tr>
|
| 220 |
+
</thead>
|
| 221 |
+
<tbody>
|
| 222 |
+
<tr class="next">
|
| 223 |
+
<td data-label="Model">Next Z1 <em>Version l294</em></td>
|
| 224 |
+
<td data-label="MMLU (5-shot) %"><strong>97.32</strong></td>
|
| 225 |
+
<td data-label="MMLU-Pro %"><strong>94.2</strong></td>
|
| 226 |
+
<td data-label="GSM8K %">97.7</td>
|
| 227 |
+
<td data-label="MATH %">93.21</td>
|
| 228 |
+
</tr>
|
| 229 |
+
<tr class="next">
|
| 230 |
+
<td data-label="Model">Next Z1 <em>Version l294</em> (no tool)</td>
|
| 231 |
+
<td data-label="MMLU (5-shot) %">94.7</td>
|
| 232 |
+
<td data-label="MMLU-Pro %">90.14</td>
|
| 233 |
+
<td data-label="GSM8K %">94.5</td>
|
| 234 |
+
<td data-label="MATH %">88.7</td>
|
| 235 |
+
</tr>
|
| 236 |
+
<tr>
|
| 237 |
+
<td data-label="Model">GPT 5</td>
|
| 238 |
+
<td data-label="MMLU (5-shot) %">92.5</td>
|
| 239 |
+
<td data-label="MMLU-Pro %">87.0</td>
|
| 240 |
+
<td data-label="GSM8K %"><strong>98.4</strong></td>
|
| 241 |
+
<td data-label="MATH %"><strong>96.0</strong></td>
|
| 242 |
+
</tr>
|
| 243 |
+
<tr>
|
| 244 |
+
<td data-label="Model">Claude Opus 4.1 (Thinking)</td>
|
| 245 |
+
<td data-label="MMLU (5-shot) %">~92.0</td>
|
| 246 |
+
<td data-label="MMLU-Pro %">87.8</td>
|
| 247 |
+
<td data-label="GSM8K %">84.7</td>
|
| 248 |
+
<td data-label="MATH %">95.4</td>
|
| 249 |
+
</tr>
|
| 250 |
+
</tbody>
|
| 251 |
+
</table>
|
| 252 |
+
|
| 253 |
+
---
|
| 254 |
+
|
| 255 |
## 🚀 Installation & Usage
|
| 256 |
|
| 257 |
### Use with vision:
|