Lamapi commited on
Commit
c3d14de
·
1 Parent(s): 5f2c517

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +124 -15
README.md CHANGED
@@ -112,21 +112,8 @@ library_name: transformers
112
  ### *Türkiye’s First Vision-Language Model — Efficient, Multimodal, and Reasoning-Focused*
113
 
114
  [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
115
- [![Language: English](https://img.shields.io/badge/Language-English-blue.svg)]()
116
- [![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--X1-V-orange.svg)](https://huggingface.co/Lamapi/next-x1)
117
-
118
- ---
119
-
120
- ## 📊 Performance & Benchmarks
121
-
122
- Next-X1-V 7B has been evaluated for **text and image understanding**, reasoning, and generation:
123
-
124
- * **Perplexity (Turkish text):** ~12–15
125
- * **Tokens/sec on 4-bit consumer GPUs:** 500–1200
126
- * **Image captioning accuracy:** High fidelity for complex scenes
127
- * **Multimodal reasoning:** Consistent and coherent across images and text
128
-
129
- > Indicates competitive performance for a **4B multimodal model**, deployable on standard GPUs with **very low latency**.
130
 
131
  ---
132
 
@@ -143,6 +130,128 @@ This model is ideal for **researchers, developers, and organizations** who need
143
 
144
  ---
145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  ## 🚀 Installation & Usage
147
 
148
  ### Use with vision:
 
112
  ### *Türkiye’s First Vision-Language Model — Efficient, Multimodal, and Reasoning-Focused*
113
 
114
  [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
115
+ [![Language: English](https://img.shields.io/badge/Language-Multilingual-red.svg)]()
116
+ [![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--4B-orange.svg)](https://huggingface.co/Lamapi/next-4b)
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  ---
119
 
 
130
 
131
  ---
132
 
133
+ <style>
134
+ table { width:fit-content; border-collapse:separate; border-spacing:0 3px;font-family:system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;background:rgba(15,22,32,0.4);border-radius:16px;padding: 10px; border:none;transition:.2s all ease;}
135
+ thead th { text-align:center; padding:4px 10px; font-size:13px; text-transform:uppercase; color:rgb(200,200,200);border:none; }
136
+ tbody tr { transition: transform 0.18s ease, box-shadow 0.18s ease; border:none !important;transition:.2s all ease;border-radius:16px;background:rgba(0, 0, 0, 0.38);}
137
+ tbody .turkish:hover {box-shadow:0 6px 15px rgba(0, 0, 0, 0.27);scale:1.01;background:rgba(80, 38, 38, 0.6);}
138
+ tbody .next:hover {box-shadow:0 6px 15px rgba(0, 0, 0, 0.27);scale:1.02;background: rgba(0, 59, 225, 1)}
139
+ tbody tr:hover { box-shadow:0 0px 15px rgba(102, 102, 102, 0.13); background:rgba(139, 139, 139, 0.16)}
140
+ td { padding:8px 10px;border:0px transparent !important;outline:transparent !important; text-align:center; }
141
+ td:first-child { font-weight:600;text-align:left }
142
+ /* tbody .turkish td { background: rgba(255, 0, 0, 0.2) !important; color:rgb(200,200,200); font-weight:400;border:0px !important; scale:1.0; } */
143
+ /* tbody .next td { background: rgba(0, 89, 255, 0.49)!important; color:rgb(200,200,200); font-weight:600;border:0px !important; scale:1.00;outline:none;border:none !important;} */
144
+ .next{
145
+ background: rgba(0, 89, 255, 0.49);
146
+ }
147
+ .turkish{
148
+ background:rgba(51, 34, 34, 0.64);
149
+ }
150
+ tbody tr td:first-child { border-top-left-radius:12px; border-bottom-left-radius:12px; }
151
+ tbody tr td:last-child { border-top-right-radius:12px; border-bottom-right-radius:12px; } strong{
152
+ font-size:16px;font-weight:700;
153
+ }
154
+ em{opacity:0.7;font-size:11px !important;}
155
+ </style>
156
+
157
+ # Our Next 1B and Next 4B models are leading to all of the tiny models in benchmarks.
158
+
159
+ <table>
160
+ <thead>
161
+ <tr>
162
+ <th>Model</th>
163
+ <th>MMLU (5-shot) %</th>
164
+ <th>MMLU-Pro %</th>
165
+ <th>GSM8K %</th>
166
+ <th>MATH %</th>
167
+ </tr>
168
+ </thead>
169
+ <tbody>
170
+ <tr class="next">
171
+ <td data-label="Model">Next 4B preview <em>Version s325</em></td>
172
+ <td data-label="MMLU (5-shot) %">84.61</td>
173
+ <td data-label="MMLU-Pro %">66.92</td>
174
+ <td data-label="GSM8K %">82.7</td>
175
+ <td data-label="MATH %">70.5</td>
176
+ </tr>
177
+ <tr class="next">
178
+ <td data-label="Model">Next 1B <em>Version t327</em></td>
179
+ <td data-label="MMLU (5-shot) %"><strong>90.3</strong></td>
180
+ <td data-label="MMLU-Pro %"><strong>69.23</strong></td>
181
+ <td data-label="GSM8K %"><strong>91.53</strong></td>
182
+ <td data-label="MATH %"><strong>77.1</strong></td>
183
+ </tr>
184
+ <tr>
185
+ <td data-label="Model">Qwen 3 0.6B</td>
186
+ <td data-label="MMLU (5-shot) %">52.81</td>
187
+ <td data-label="MMLU-Pro %">37.56</td>
188
+ <td data-label="GSM8K %">60.65</td>
189
+ <td data-label="MATH %">20.5</td>
190
+ </tr>
191
+ <tr>
192
+ <td data-label="Model">Llama 3.2 1B</td>
193
+ <td data-label="MMLU (5-shot) %">49.3</td>
194
+ <td data-label="MMLU-Pro %">44.4</td>
195
+ <td data-label="GSM8K %">11.9</td>
196
+ <td data-label="MATH %">30.6</td>
197
+ </tr>
198
+ <tr class="turkish">
199
+ <td data-label="Model">Kumru 7B</td>
200
+ <td data-label="MMLU (5-shot) %">30.76</td>
201
+ <td data-label="MMLU-Pro %">28.57</td>
202
+ <td data-label="GSM8K %">-</td>
203
+ <td data-label="MATH %">-</td>
204
+ </tr>
205
+ </tbody>
206
+ </table>
207
+
208
+ ---
209
+
210
+ # Also, our Next Z1 model is leading to state-of-the-art models in some of the Benchmarks.
211
+ <table>
212
+ <thead>
213
+ <tr>
214
+ <th>Model</th>
215
+ <th>MMLU (5-shot) %</th>
216
+ <th>MMLU-Pro %</th>
217
+ <th>GSM8K %</th>
218
+ <th>MATH %</th>
219
+ </tr>
220
+ </thead>
221
+ <tbody>
222
+ <tr class="next">
223
+ <td data-label="Model">Next Z1 <em>Version l294</em></td>
224
+ <td data-label="MMLU (5-shot) %"><strong>97.32</strong></td>
225
+ <td data-label="MMLU-Pro %"><strong>94.2</strong></td>
226
+ <td data-label="GSM8K %">97.7</td>
227
+ <td data-label="MATH %">93.21</td>
228
+ </tr>
229
+ <tr class="next">
230
+ <td data-label="Model">Next Z1 <em>Version l294</em> (no tool)</td>
231
+ <td data-label="MMLU (5-shot) %">94.7</td>
232
+ <td data-label="MMLU-Pro %">90.14</td>
233
+ <td data-label="GSM8K %">94.5</td>
234
+ <td data-label="MATH %">88.7</td>
235
+ </tr>
236
+ <tr>
237
+ <td data-label="Model">GPT 5</td>
238
+ <td data-label="MMLU (5-shot) %">92.5</td>
239
+ <td data-label="MMLU-Pro %">87.0</td>
240
+ <td data-label="GSM8K %"><strong>98.4</strong></td>
241
+ <td data-label="MATH %"><strong>96.0</strong></td>
242
+ </tr>
243
+ <tr>
244
+ <td data-label="Model">Claude Opus 4.1 (Thinking)</td>
245
+ <td data-label="MMLU (5-shot) %">~92.0</td>
246
+ <td data-label="MMLU-Pro %">87.8</td>
247
+ <td data-label="GSM8K %">84.7</td>
248
+ <td data-label="MATH %">95.4</td>
249
+ </tr>
250
+ </tbody>
251
+ </table>
252
+
253
+ ---
254
+
255
  ## 🚀 Installation & Usage
256
 
257
  ### Use with vision: